首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1748篇
  免费   126篇
  国内免费   1篇
  1875篇
  2022年   20篇
  2021年   25篇
  2020年   17篇
  2019年   15篇
  2018年   26篇
  2017年   19篇
  2016年   34篇
  2015年   41篇
  2014年   65篇
  2013年   84篇
  2012年   96篇
  2011年   95篇
  2010年   54篇
  2009年   48篇
  2008年   84篇
  2007年   84篇
  2006年   72篇
  2005年   82篇
  2004年   93篇
  2003年   98篇
  2002年   86篇
  2001年   46篇
  2000年   49篇
  1999年   49篇
  1998年   17篇
  1997年   16篇
  1996年   18篇
  1995年   23篇
  1994年   22篇
  1993年   15篇
  1992年   24篇
  1991年   22篇
  1990年   28篇
  1989年   27篇
  1988年   29篇
  1987年   26篇
  1986年   13篇
  1985年   24篇
  1984年   19篇
  1983年   13篇
  1982年   17篇
  1980年   8篇
  1979年   25篇
  1978年   20篇
  1977年   9篇
  1976年   12篇
  1975年   8篇
  1974年   9篇
  1973年   8篇
  1968年   6篇
排序方式: 共有1875条查询结果,搜索用时 15 毫秒
251.
The size of the vertebrate brain is shaped by a variety of selective forces. Although larger brains (correcting for body size) are thought to confer fitness advantages, energetic limitations of this costly organ may lead to trade-offs, for example as recently suggested between sexual traits and neural tissue. Here, we examine the patterns of selection on male and female brain size in pinnipeds, a group where the strength of sexual selection differs markedly among species and between the sexes. Relative brain size was negatively associated with the intensity of sexual selection in males but not females. However, analyses of the rates of body and brain size evolution showed that this apparent trade-off between sexual selection and brain mass is driven by selection for increasing body mass rather than by an actual reduction in male brain size. Our results suggest that sexual selection has important effects on the allometric relationships of neural development.  相似文献   
252.
The details of the mechanism by which severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia are unclear. We investigated the immune responses and pathologies of SARS-CoV-infected BALB/c mice that were immunized intradermally with recombinant vaccinia virus (VV) that expressed either the SARS-CoV spike (S) protein (LC16m8rVV-S) or simultaneously all the structural proteins, including the nucleocapsid (N), membrane (M), envelope (E), and S proteins (LC16m8rVV-NMES) 7-8 wk before intranasal SARS-CoV infection. The LC16m8rVV-NMES-immunized group exhibited as severe pneumonia as the control groups, although LC16m8rVV-NMES significantly decreased the pulmonary SARS-CoV titer to the same extent as LC16m8rVV-S. To identify the cause of the exacerbated pneumonia, BALB/c mice were immunized with recombinant VV that expressed the individual structural proteins of SARS-CoV (LC16mOrVV-N, -M, -E, -S) with or without LC16mOrVV-S (i.e., LC16mOrVV-N, LC16mOrVV-M, LC16mOrVV-E, or LC16mOrVV-S alone or LC16mOrVV-N + LC16mOrVV-S, LC16mOrVV-M + LC16mOrVV-S, or LC16mOrVV-E + LC16mOrVV-S), and infected with SARS-CoV more than 4 wk later. Both LC16mOrVV-N-immunized mice and LC16mOrVV-N + LC16mOrVV-S-immunized mice exhibited severe pneumonia. Furthermore, LC16mOrVV-N-immunized mice upon infection exhibited significant up-regulation of both Th1 (IFN-gamma, IL-2) and Th2 (IL-4, IL-5) cytokines and down-regulation of anti-inflammatory cytokines (IL-10, TGF-beta), resulting in robust infiltration of neutrophils, eosinophils, and lymphocytes into the lung, as well as thickening of the alveolar epithelium. These results suggest that an excessive host immune response against the nucleocapsid protein of SARS-CoV is involved in severe pneumonia caused by SARS-CoV infection. These findings increase our understanding of the pathogenesis of SARS.  相似文献   
253.
Ionizing radiation-induced genomic instability has been demonstrated in a variety of endpoints such as delayed reproductive death, chromosome instability and mutations, which occurs in the progeny of survivors many generations after the initial insult. Dependence of these effects on the linear energy transfer (LET) of the radiation is incompletely characterized; however, our previous work has shown that delayed reductions in clonogenicity can be most pronounced at LET of 108 keV/microm. To gain insight into potential cellular mechanisms involved in LET-dependent delayed loss of clonogenicity, we investigated morphological changes in colonies arising from normal human diploid fibroblasts exposed to gamma-rays or energetic carbon ions (108 keV/microm). Exposure of confluent cultures to carbon ions was 4-fold more effective at inactivating cellular clonogenic potential and produced more abortive colonies containing reduced number of cells per colony than gamma-rays. Second, colonies were assessed for clonal morphotypic heterogeneity. The yield of differentiated cells was elevated in a dose- and LET-dependent fashion in clonogenic colonies, whereas differentiated cells predominated to a comparable extent irrespective of radiation type or dose in abortive colonies. The incidence of giant or multinucleated cells was also increased but much less frequent than that of differentiated cells. Collectively, our results indicate that carbon ions facilitate differentiation more effectively than gamma-rays as a major response in the progeny of irradiated fibroblasts. Accelerated differentiation may account, at least in part, for dose- and LET-dependent delayed loss of clonogenicity in normal human diploid cells, and could be a defensive mechanism that minimizes further expansion of aberrant cells.  相似文献   
254.
255.
Streptococcus pneumoniae is a major causative agent of mortality throughout the world. The initial event in invasive pneumococcal disease is the attachment of pneumococci to epithelial cells in the upper respiratory tract. Several bacterial proteins can bind to host extracellular matrix proteins and function as adhesins and invasins. To identify adhesins or invasins on the pneumococcal cell surface, we searched for several proteins with an LPXTG anchoring motif in the whole-genome sequence of Streptococcus pneumoniae and identified one, which we called PfbA (plasmin- and fibronectin-binding protein A), that bound to human serum proteins. Immunofluorescence microscopy and fluorescence-activated cell sorter analysis revealed that PfbA was expressed on the pneumococcal cell surface. A DeltapfbA mutant strain was only half as competent as the wild-type strain at adhering to and invading lung and laryngeal epithelial cells. In addition, epithelial cells infected with DeltapfbA showed morphological changes, including cell flattening and a loss of microvilli, that did not occur in cells infected with the wild-type strain. The mutant strain also exhibited a weaker antiphagocytotic activity than wild type in human peripheral blood. Moreover, the growth of wild-type bacteria in human whole blood containing anti-PfbA antibodies was reduced by approximately 50% after 3 h compared with its growth without the antibody. These results suggest that PfbA is an important factor in the development of pneumococcal infections.  相似文献   
256.
A relative lack of neutrophils around Streptococcus pyogenes is observed in streptococcal toxic shock syndrome (STSS). Because the bacteria spread rapidly into various organs in STSS, we speculated that S. pyogenes is equipped with molecules to evade the host innate immune system. Complement C3b opsonizes the pathogen to facilitate phagocytosis, and a complex of C3b converts C5 into anaphylatoxin. Because we found that C3 (C3b) is degraded in sera from patients with STSS, we investigated the mechanism of C3 (C3b) degradation by S. pyogenes. We incubated human C3b or serum with recombinant SpeB (rSpeB), a wild-type S. pyogenes strain isolated from an STSS patient or its isogenic DeltaspeB mutant and examined the supernatant by Western blotting with anti-human C3b. Western blot and Biacore analyses revealed that rSpeB and wild-type S. pyogenes rapidly degrade C3b. Additionally, C3 (C3b) was not detected in sera collected from infected areas of STSS patients. Furthermore, the survival rate in human blood and in mice was lower for the DeltaspeB mutant than the wild-type strain. Histopathological observations demonstrated that neutrophils were recruited to and phagocytosed the DeltaspeB mutant, whereas with the wild-type strain, few neutrophils migrated to the site of infection, and the bacteria spread along the fascia. We observed the degradation of C3 (C3b) in sera from STSS patients and the degradation of C3 (C3b) by rSpeB. This suggests that SpeB contributes to the escape of S. pyogenes from phagocytosis at the site of initial infection, allowing it to invade host tissues during severe infections.  相似文献   
257.
Autophagy is a membrane-mediated intracellular degradation system. The serine/threonine kinase Atg1 plays an essential role in autophagosome formation. However, the role of the mammalian Atg1 homologues UNC-51-like kinase (ULK) 1 and 2 are not yet well understood. We found that murine ULK1 and 2 localized to autophagic isolation membrane under starvation conditions. Kinase-dead alleles of ULK1 and 2 exerted a dominant-negative effect on autophagosome formation, suggesting that ULK kinase activity is important for autophagy. We next screened for ULK binding proteins and identified the focal adhesion kinase family interacting protein of 200 kD (FIP200), which regulates diverse cellular functions such as cell size, proliferation, and migration. We found that FIP200 was redistributed from the cytoplasm to the isolation membrane under starvation conditions. In FIP200-deficient cells, autophagy induction by various treatments was abolished, and both stability and phosphorylation of ULK1 were impaired. These results suggest that FIP200 is a novel mammalian autophagy factor that functions together with ULKs.  相似文献   
258.
The gene for cellobiose 2-epimerase (CE) from Ruminococcus albus NE1 was overexpressed in Escherichia coli cells. The recombinant CE was purified to homogeneity by a simple purification procedure with a high yield of 88%, and the molecular mass was 43.1 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis and 44.0 kDa on gel chromatography. It exhibited optimal activity around at 30 degrees C and pH 7.5, and the enzyme activity was inhibited by Al3+, Fe3+, Co2+, Cu2+, Zn2+, Pb2+, Ag+, N-bromosuccinimide, iodoacetate, and 4-chloromercuribenzoate. In addition to cello-oligosaccharides, the enzyme was found to effectively 2-epimerize lactose to yield 4-O-beta-D-galactopyranosyl-D-mannose (epilactose), which occurs in cow milk as a rare oligosaccharide. The Km and kcat/Km values toward lactose were 33 mM and 1.6 s(-1) mM(-1), and those toward cellobiose were 13.8 mM and 4.6 s(-1) mM(-1), respectively. N-Acetyl-D-glucosamine, uridine 5'-diphosphate-glucose, D-glucose 6-phosphate, maltose, sophorose, laminaribiose, and gentiobiose were inert as substrates for the recombinant CE. We demonstrated that epilactose was resistant to rat intestinal enzymes, utilized by human adult bifidobacteria, and stimulated the tight junction permeability in Caco-2 cells. These results strongly suggest that this rare disaccharide is promising for use as a prebiotic.  相似文献   
259.
Stump-tailed macaques (Macaca arctoides) exhibit significant intraspecific variation in pelage color. Based on their pelage color and geographical distribution, they are classified into 2 subspecies: northern bright brown Macaca arctoides arctoides and southern black Macaca arctoides melanota. However, studies on the natural population are extremely scarce, and researchers have occasionally questioned the subspecific classification. We quantitatively examined pelage color variation of Macaca arctoides in 3 free-ranging populations in Thailand. Pelage color difference between populations is significant. The population distributed south of the Isthmus of Kra showed wide intrapopulational variation, including bright brown, dark brown, and completely black, whereas the northern populations primarily had dark brown hairs. Thus, we conclude that one cannot classify the color variants into subspecies. Further, we hypothesize that the distinctive polymorphism in southern Thailand resulted from geographical isolation caused by the Pleistocene eustatic fluctuations and subsequent recovery of land connection and subsequent gene flow.  相似文献   
260.
Lipid storage protein 2 (Lsd 2) is a conserved insect protein that belongs to the small PAT family of proteins. PAT proteins are found associated to the lipid droplets of adipocytes and play significant roles in the regulation of triacylglycerides metabolism. Here we describe the expression and purification of Lsd2, its reconstitution in lipoprotein particles, the location of putative lipid binding sites and its secondary structure. This study provides the starting point for future studies on the mechanism of function of Lsd2. The similarities and differences between Lsd1 and Lsd2, the only PAT proteins found in insects, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号