首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   51篇
  2024年   1篇
  2022年   5篇
  2021年   12篇
  2020年   2篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   17篇
  2015年   31篇
  2014年   31篇
  2013年   57篇
  2012年   50篇
  2011年   42篇
  2010年   29篇
  2009年   33篇
  2008年   40篇
  2007年   54篇
  2006年   39篇
  2005年   36篇
  2004年   33篇
  2003年   36篇
  2002年   38篇
  2001年   8篇
  2000年   7篇
  1999年   14篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   7篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1971年   1篇
  1967年   2篇
排序方式: 共有704条查询结果,搜索用时 710 毫秒
31.
We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.  相似文献   
32.
Above a certain level of cerebral activation the brain increases its uptake of glucose more than that of O(2), i.e., the cerebral metabolic ratio of O(2)/(glucose + 12 lactate) decreases. This study quantified such surplus brain uptake of carbohydrate relative to O(2) in eight healthy males who performed exhaustive exercise. The arterial-venous differences over the brain for O(2), glucose, and lactate were integrated to calculate the surplus cerebral uptake of glucose equivalents. To evaluate whether the amount of glucose equivalents depends on the time to exhaustion, exercise was also performed with beta(1)-adrenergic blockade by metoprolol. Exhaustive exercise (24.8 +/- 6.1 min; mean +/- SE) decreased the cerebral metabolic ratio from a resting value of 5.6 +/- 0.2 to 3.0 +/- 0.4 (P < 0.05) and led to a surplus uptake of glucose equivalents of 9 +/- 2 mmol. beta(1)-blockade reduced the time to exhaustion (15.8 +/- 1.7 min; P < 0.05), whereas the cerebral metabolic ratio decreased to an equally low level (3.2 +/- 0.3) and the surplus uptake of glucose equivalents was not significantly different (7 +/- 1 mmol; P = 0.08). A time-dependent cerebral surplus uptake of carbohydrate was not substantiated and, consequently, exhaustive exercise involves a brain surplus carbohydrate uptake of a magnitude comparable with its glycogen content.  相似文献   
33.
In the accompanying paper, we found, using molecular dynamics calculations, four domains of the ras-specific SOS guanine nucleotide exchange protein (residues 589-601, 654-675, 746-761, and 980-989) that differ markedly in conformation when SOS is complexed with either oncogenic (Val 12-) ras-p21 or wild-type ras-p21. Three of these domains contain three crystallographically undefined loops that we modeled in these calculations, and one is a newly identified non-loop domain containing SOS residues 980-989. We have now synthesized peptides corresponding to these four domains and find that all of them block Val 12-ras-p21-induced oocyte maturation. All of them also block insulin-induced oocyte maturation, but two of these peptides, corresponding to SOS residues 589-601 and 980-989, block oncogenic ras to a significantly greater extent. These results suggest that SOS contains domains, including the three loop domains, that are important for ras signaling and that several of these domains can activate different pathways specific to oncogenic or wild-type ras-p21.  相似文献   
34.
Oncogenic ras-p21 directly activates jun-N-terminal kinase (JNK) and its substrate, jun as a unique step on its mitogenic signal transduction pathway. This activation is blocked by the specific JNK-jun inhibitor, glutathione-S-transferase-pi (GST-pi). Four domains of GST-pi have been implicated in this regulatory function: 34-50, 99-121, 165-182, and 194-201. The 34-50 domain is unique in that it does not affect GST-pi binding to JNK-jun but blocks jun phosphorylation by JNK. We now find that it completely blocks oncogenic (Val 12-) ras-p21-induced oocyte maturation but has no effect on insulin-induced oocyte maturation. Because the latter process requires activation of wild-type ras-p21, this peptide appears to be specific for inhibiting only the oncogenic form of ras-p21, suggesting its use in treating ras-induced tumors.  相似文献   
35.
When continuation of exercise calls for a "will," the cerebral metabolic ratio of O2 to (glucose + lactate) decreases, with the largest reduction (30-50%) at exhaustion. Because a larger effort is required to exercise with the arms than with the legs, we tested the hypothesis that the reduction in the cerebral metabolic ratio would become more pronounced during arm cranking than during leg exercise. The cerebral arterial-venous differences for blood-gas variables, glucose, and lactate were evaluated in two groups of eight subjects during exhaustive arm cranking and leg exercise. During leg exercise, exhaustion was elicited after 25 +/- 6 (SE) min, and the cerebral metabolic ratio was reduced from 5.6 +/- 0.2 to 3.5 +/- 0.2 after 10 min and to 3.3 +/- 0.3 at exhaustion (P < 0.05). Arm cranking lasted for 35 +/- 4 min and likewise decreased the cerebral metabolic ratio after 10 min (from 6.7 +/- 0.4 to 5.0 +/- 0.3), but the nadir at exhaustion was only 4.7 +/- 0.4, i.e., higher than during leg exercise (P < 0.05). The results demonstrate that exercise decreases the cerebral metabolic ratio when a conscious effort is required, irrespective of the muscle groups engaged. However, the comparatively small reduction in the cerebral metabolic ratio during arm cranking suggests that it is influenced by the exercise paradigm.  相似文献   
36.
37.
UFD2a is a mammalian homolog of Saccharomyces cerevisiae Ufd2, originally described as an E4 ubiquitination factor. UFD2a belongs to the U-box family of ubiquitin ligases (E3s) and likely functions as both an E3 and E4. We have isolated and characterized the mouse gene (Ube4b) for UFD2a. A full-length (approximately 5700 bp) Ube4b cDNA was isolated and the corresponding gene spans >100 kb, comprising 27 exons. Luciferase reporter gene analysis of the 5(') flanking region of Ube4b revealed that nucleotides -1018 to -943 (relative to the translation initiation site) possess promoter activity. This functional sequence contains two putative Sp1 binding sites but not a TATA box. Immunoblot and immunohistochemical analyses revealed that UFD2a is expressed predominantly in the neuronal tissues. We also show that UFD2a interacts with VCP (a AAA-family ATPase) that is thought to mediate protein folding. These data implicate UFD2a in the degradation of neuronal proteins by the ubiquitin-proteasome pathway.  相似文献   
38.
Intracellular delivery of glutathione S-transferase into mammalian cells   总被引:4,自引:0,他引:4  
Protein transduction domains (PTDs) derived from human immunodeficiency virus Tat protein and herpes simplex virus VP22 protein are useful for the delivery of non-membrane-permeating polar or large molecules into living cells. In the course of our study aiming at evaluating PTD, we unexpectedly found that the fluorescent-dye-labeled glutathione S-transferase (GST) from Schistosoma japonicum without known PTDs was delivered into COS7 cells. The intracellular transduction of GST was also observed in HeLa, NIH3T3, and PC12 cells, as well as in hippocampal primary neurons, indicating that a wide range of cell types is permissive for GST transduction. Furthermore, we showed that the immunosuppressive peptide VIVIT fused with GST successfully inhibits NFAT activation. These results suggest that GST is a novel PTD which may be useful in the intracellular delivery of biologically active molecules, such as small-molecule drugs, bioactive peptides, or proteins.  相似文献   
39.
A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular prion form (PrP(C)) to its pathogenic isoform (PrP(Sc)). Although the three-dimensional structures of monomeric and dimeric human prion protein (HuPrP) have been revealed by NMR spectroscopy and x-ray crystallography, the process underlying the conformational change from PrP(C) to PrP(Sc) and the dynamics and functions of PrP(C) remain unknown. The dimeric form is thought to play an important role in the conformational transition. In this study, we performed molecular dynamics (MD) simulations on monomeric and dimeric HuPrP at 300 K and 500 K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH, which is known as a disease-associated factor. Our results indicate that the dynamics of the dimer and monomer were similar (e.g., denaturation of helices and elongation of the beta-sheet). However, additional secondary structure elements formed in the dimer might result in showing the differences in dynamics and properties between the monomer and dimer (e.g., the greater retention of dimeric than monomeric tertiary structure).  相似文献   
40.
For cancer metastasis, tumor cells present in the circulation must first adhere to the endothelium. Integrins play a central role in leukocyte adhesion to the endothelium and subsequent migration into tissues. The majority of tumor cells derived from solid cancers, including breast cancer, do not express integrins. We investigated the mechanisms of adhesion and transendothelial migration of cancer cells using breast carcinoma cell lines. Our results showed the following features of breast cancer cells: (1) HGF stimulated breast cancer cells by up-regulating CD44 expression in a concentration-dependent manner. (2) the maximum level of HGF-induced CD44 up-regulation on breast cancer cell lines occurred within 3 h. (3) HGF-induced up-regulation of CD44 was mediated by the tyrosine kinase signaling pathway. (4) HGF induced CD44-mediated adhesion of tumor cell lines to bone marrow-derived endothelial cells. (5) HGF did not change rolling of breast cancer cell lines on bone marrow-derived endothelial cells, but enhanced firm adhesion of cancer cells on endothelial cells under shear stress conditions. (6) HGF increased transendothelial migration of cancer cells. Our results indicate that HGF stimulates CD44-mediated adhesion of breast cancer cells to bone marrow-derived endothelial cells, which subsequently results in transendothelial migration of tumor cells. These results suggest that CD44 may confer the metastatic properties of breast cancer cells and, therefore, could be used as a target in future molecular cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号