首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   654篇
  免费   51篇
  2024年   1篇
  2022年   6篇
  2021年   12篇
  2020年   2篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   17篇
  2015年   31篇
  2014年   31篇
  2013年   57篇
  2012年   50篇
  2011年   42篇
  2010年   29篇
  2009年   33篇
  2008年   40篇
  2007年   54篇
  2006年   39篇
  2005年   36篇
  2004年   33篇
  2003年   36篇
  2002年   38篇
  2001年   8篇
  2000年   7篇
  1999年   14篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   7篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1971年   1篇
  1967年   2篇
排序方式: 共有705条查询结果,搜索用时 15 毫秒
191.
M Tomida  H Koyama    T Ono 《The Biochemical journal》1977,162(3):539-543
A small amount of hyaluronic acid is synthesized in confluent cultures of rat fibroblasts, which have a high content of cyclic AMP. Addition of calf serum caused a rapid decrease in the cellular cyclic AMP content and large increases in hyaluronic acid synthetase activity and hyaluronic acid production. Addition of cyclic AMP also caused a marked increase in hyaluronic acid synthetase activity within 2h and then increased hyaluronic acid production. The effects of cyclic AMP and serum on hyaluronic acid synthesis were additive. Prostaglandin E2, which increased the cyclic AMP by stimulating adenylate cyclase, was as effective as cyclic AMP in increasing hyaluronic acid synthetase activity, but AMP was far less effective than cyclic AMP. These results indicate that cyclic AMP itself stimulates the mucopolysaccharide synthesis and that the effect of serum is not due to a decrease in cyclic AMP in the cells.  相似文献   
192.
Cells of a newly established rat fibroblast line (SEN) in culture synthesize mucopolysaccharides, which have been identified as hyaluronic acid, chondroitin-4-sulfate and heparan sulfate. Treatment of the cells with adenosine 3′:5′-cyclic monophosphate resulted in a marked stimulation of production of hyaluronic acid, but not of the other mucopolysaccharides. Treated cells also showed increased activity of hyaluronic acid synthetase, a reduction in growth rate, and morphological alteration. In addition, 5-bromodeoxyuridine was found to counteract greatly the cyclic AMP effect.  相似文献   
193.
194.
In previous studies, involving molecular modeling of wild-type and oncogenic forms of the ras-p21 protein bound to GTPase activating protein GAP and the ras-specific guanine nucleotide exchange-promoting protein, SOS, we identified specific domains of GAP and SOS proteins that differ in conformation when the computed average structures of the corresponding wild-type and oncogenic complexes are superimposed. Additionally, in these previous studies, we have synthesized peptides corresponding to these domains and found that all of them inhibit either or both oncogenic (Val 12-containing) p21- and insulin-activated wild-type p21-induced oocyte maturation. To document further the specificity of the inhibition of these peptides for the ras signal transduction pathway, we have now tested their effects on progesterone-induced maturation that occurs by a ras-independent pathway. None of these peptides, including a peptide corresponding to residues 980–989 of SOS that completely blocks oncogenic p21-induced maturation and also causes extensive inhibition of insulin-induced maturation, affects progesterone-induced maturation, suggesting that all of these peptides are specific for the ras pathway. Since our approach to the design of peptides that can inhibit oncogenic ras-p21 selectively is based on identifying domains that differ in conformation between oncogenic and wild-type complexes, we have now further synthesized peptides that correspond to domains of GAP (residues 903–910) and SOS (residues 792–804) that do not differ in conformation when the average structures are superimposed. These peptides do not inhibit either oncogenic p21- or insulin-induced oocyte maturation, supporting the overall strategy of using peptides from domains that change conformation as the ones most likely to inhibit oncogenic and/or wild-type ras-p21. These results further support the specificity of inhibition of the GAP and SOS peptides from the conformationally distinct domains of both proteins.  相似文献   
195.
We examined sex differences in copulation attempts in a group of wild bonobos at Wamba, Congo, by analyzing the behavioral sequence. Most copulation attempts were initiated by approach or courtship behaviors by males. Males showed these behaviors when they were more than 5 m from females, whereas females did so only when males solicited them from within 5 m. Most copulations involved females showing perineal swelling, because males solicited those females more frequently and those females accepted copulation more frequently than did females in the non-swelling phase. Nevertheless, males solicited females in the non-swelling phase in one-third of copulation attempts, and those females accepted copulation in half of those attempts. This is markedly different from chimpanzees, in which sexual behaviors almost exclusively involve females in the swelling phase. The perineum of female bonobos during the non-swelling phase is soft and wrinkled but fairly large, which may attract males to some extent. The low, but existing, attractiveness and receptivity of female bonobos during the non-swelling phase might have evolved to control sexual competition among males and provide higher social status for females.  相似文献   
196.
We used K(+) and tetraphenylphosphonium (TPP(+)) electrodes simultaneously to evaluate the ability of antimicrobial peptides to form channels (or more generally to increase permeability) and to abolish membrane potential in bacterial cytoplasmic membranes in situ. Such evaluations are usually made independently by colorimetric monitoring of the hydrolysis of a chromogenic substrate by a cytoplasmic enzyme or by fluorimetric determination of membrane depolarization using a membrane potential-sensitive dye. In the present study, the K(+) electrode was used to evaluate channel-forming ability by monitoring the efflux of K(+) originally present in the cytoplasm of bacteria, while the TPP(+) electrode was used to examine membrane depolarization causing the efflux of TPP(+) accumulated in the cytoplasm of bacteria dependent on membrane potential. Thus, the combination of these two electrodes enabled us to clarify how the peptide-induced formation of ion channels is involved in disrupting the energy-generating system in situ.  相似文献   
197.
Bin1/M-amphiphysin-II is an amphiphysin-II isoform highly expressed in transverse tubules of adult striated muscle and is implicated in their biogenesis. Bin1 contains a basic unique amino-acid sequence, Exon10, which interacts with certain phosphoinositides such as phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), to localize to membranes. Here we found that Exon10 also binds to the src homology 3 (SH3) domain of Bin1 itself, and hence blocks the binding of the SH3 domain to its canonical PxxP ligands, including dynamin. This blockage was released by addition of PI(4,5)P(2) in vitro or in cells overexpressing phosphatidylinositol 4-phosphate 5-kinase. The Exon10-binding interface of the Bin1 SH3 domain largely overlapped with its PxxP-binding interface. We also show that the PLCdelta pleckstrin homology domain, another PI(4,5)P(2)-binding module, cannot substitute for Exon10 in Bin1 function in transverse tubule formation, and suggest the importance of the dual biochemical properties of Exon10 in myogenesis. Our results exemplify a novel mechanism of SH3 domain regulation, and suggest that the SH3-mediated protein-protein interactions of Bin1 are regulated by Exon10 so that it may only occur when Bin1 localizes to certain submembrane areas.  相似文献   
198.
Two taxoids, taxinine NN-7 (1) and 3,11-cyclotaxinine NN-2 (2), were isolated from the neutral fraction of the EtOAc extract of a mixture of needles and young stems of Taxus cuspidata. The structures were determined by spectroscopic analysis. Both compounds showed some activity as modulators of multidrug-resistant tumor cells.  相似文献   
199.
We investigated whether dynamic cerebral autoregulation is affected by exhaustive exercise using transfer-function gain and phase shift between oscillations in mean arterial pressure (MAP) and middle cerebral artery (MCA) mean blood flow velocity (V(mean)). Seven subjects were instrumented with a brachial artery catheter for measurement of MAP and determination of arterial Pco(2) (Pa(CO(2))) while jugular venous oxygen saturation (Sv(O(2))) was determined to assess changes in whole brain blood flow. After a 10-min resting period, the subjects performed dynamic leg-cycle ergometry at 168 +/- 5 W (mean +/- SE) that was continued to exhaustion with a group average time of 26.8 +/- 5.8 min. Despite no significant change in MAP during exercise, MCA V(mean) decreased from 70.2 +/- 3.6 to 57.4 +/- 5.4 cm/s, Sv(O(2)) decreased from 68 +/- 1 to 58 +/- 2% at exhaustion, and both correlated to Pa(CO(2)) (5.5 +/- 0.2 to 3.9 +/- 0.2 kPa; r = 0.47; P = 0.04 and r = 0.74; P < 0.001, respectively). An effect on brain metabolism was indicated by a decrease in the cerebral metabolic ratio of O(2) to [glucose + one-half lactate] from 5.6 to 3.8 (P < 0.05). At the same time, the normalized low-frequency gain between MAP and MCA V(mean) was increased (P < 0.05), whereas the phase shift tended to decrease. These findings suggest that dynamic cerebral autoregulation was impaired by exhaustive exercise despite a hyperventilation-induced reduction in Pa(CO(2)).  相似文献   
200.
Growth and rate, at which fermentation products are formed in cells, generally decreases during the stationary phase as a result of changes in gene expression. We focused on the rmf gene, which encodes the ribosome modulation factor protein, as a target for strain modification in order to improve the rate of L-lysine production in Escherichia coli. Increased expression of the rmf gene during the stationary phase was confirmed under various cultivation conditions using DNA macroarray analysis. Mutants with disrupted rmf were then generated from an L-lysine-producing E. coli strain. The rates of L-lysine accumulation and production were significantly increased in disruptants that were cultivated with excess phosphate. By contrast, a higher biomass was generated in disruptants that were grown under limited phosphate conditions. These results demonstrate that disruption of the rmf gene significantly affects L-lysine production and growth in E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号