首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   51篇
  2024年   1篇
  2022年   5篇
  2021年   12篇
  2020年   2篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   17篇
  2015年   31篇
  2014年   31篇
  2013年   57篇
  2012年   50篇
  2011年   42篇
  2010年   29篇
  2009年   33篇
  2008年   40篇
  2007年   54篇
  2006年   39篇
  2005年   36篇
  2004年   33篇
  2003年   36篇
  2002年   38篇
  2001年   8篇
  2000年   7篇
  1999年   14篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   7篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1971年   1篇
  1967年   2篇
排序方式: 共有704条查询结果,搜索用时 31 毫秒
111.
Autophagy is an evolutionarily conserved machinery for bulk degradation of cytoplasmic components. Here, we report upregulation of autophagosome formation in pancreatic beta cells in diabetic db/db and in nondiabetic high-fat-fed C57BL/6 mice. Free fatty acids (FFAs), which can cause peripheral insulin resistance associated with diabetes, induced autophagy in beta cells. Genetic ablation of atg7 in beta cells resulted in degeneration of islets and impaired glucose tolerance with reduced insulin secretion. While high-fat diet stimulated beta cell autophagy in control mice, it induced profound deterioration of glucose tolerance in autophagy-deficient mutants, partly because of the lack of compensatory increase in beta cell mass. These findings suggest that basal autophagy is important for maintenance of normal islet architecture and function. The results also identified a unique role for inductive autophagy as an adaptive response of beta cells in the presence of insulin resistance induced by high-fat diet.  相似文献   
112.
Motono C  Gromiha MM  Kumar S 《Proteins》2008,71(2):655-669
The cold shock protein (CSP) from hyperthermophile Thermotoga maritima (TmCSP) is only marginally stable (DeltaG(T(opt)) = 0.3 kcal/mol) at 353 K, the optimum environmental temperature (T(opt)) for T. maritima. In comparison, homologous CSPs from E. coli (DeltaG(T(opt)) = 2.2 kcal/mol) and B. subtilis (DeltaG(T(opt)) = 1.5 kcal/mol) are at least five times more stable at 310 K, the T(opt) for the mesophiles. Yet at the room temperature, TmCSP is more stable (DeltaG(T(R)) = 4.7 kcal/mol) than its homologues (DeltaG(T(R)) = 3.0 kcal/mol for E. coli CSP and DeltaG(T(R)) = 2.1 kcal/mol for B. subtilis CSP). This unique observation suggests that kinetic, rather than thermodynamic, barriers toward unfolding might help TmCSP native structure at high temperatures. Consistently, the unfolding rate of TmCSP is considerably slower than its homologues. High temperature (600 K) complete unfolding molecular dynamics (MD) simulations of TmCSP support our hypothesis and reveal an unfolding scheme unique to TmCSP. For all the studied homologues of TmCSP, the unfolding process first starts at the C-terminal region and N-terminal region unfolds in the end. But for TmCSP, both the terminals resist unfolding for consistently longer simulation times and, in the end, unfold simultaneously. In TmCSP, the C-terminal region is better fortified and has better interactions with the N-terminal region due to the charged residues, R2, E47, E49, H61, K63, and E66, being in spatial vicinity. The electrostatic interactions among these residues are unique to TmCSP. Consistently, the room temperature MD simulations show that TmCSP is more rigid at its N- and C-termini as compared to its homologues from E. coli, B. subtilis, and B. caldolyticus.  相似文献   
113.
Chitosan, a cationic polysaccharide, is widely employed as dietary supplement and in pharmacological and biomedical applications. Although numerous studies have focused on its applications as pharmaceutical excipients or bioactive reagents, relationships between molecular weight (Mr) and biological properties remain unclear. The focus of this study was on the antioxidant properties of several Mr chitosans. We measured the ability of seven Mr chitosans (CT1; 2.8 kDa, CT2; 17.0 kDa, CT3; 33.5 kDa, CT4; 62.6 kDa, CT5; 87.7 kDa, CT6; 604 kDa, CT7; 931 kDa) to protect plasma protein from oxidation by peroxyl radicals derived from 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). A comparison of the antioxidant action of high Mr chitosans (CT6–CT7) with that of low Mr chitosans (CT1–CT5) showed that low Mr chitosans (CT1–CT5) were more effective in preventing the formation of carbonyl groups in plasma protein exposed to peroxyl radicals. AAPH substantially increases plasma protein carbonyl content via the oxidation of human serum albumin (HSA). We also measured the ability of these chitosans to protect HSA against oxidation by AAPH. Low Mr chitosans (CT1–CT5) were found to effectively prevent the formation of carbonyl groups in HSA, when exposed to peroxyl radicals. Low Mr chitosans were also good scavengers of N-centered radicals, but high Mr chitosans were much less effective. We also found a strong correlation between antioxidant activity and the Mr of chitosans in vitro. These activities were also determined by using the ‘TPAC’ test. These results suggest that low Mr chitosans (CT1–CT3) may be absorbed well from the gastrointestinal tract and inhibit neutrophil activation and oxidation of serum albumin that is frequently observed in patients plasma undergoing hemodialysis, resulting in a reduction in oxidative stress associated with uremia.  相似文献   
114.
115.
A novel class of imidazopyridine derivatives was designed as PLK1 inhibitors. Extensive SAR studies supported by molecular modeling afforded a highly potent and selective compound 36. Compound 36 demonstrated good antitumor efficacy in xenograft nude rat model.  相似文献   
116.
Protein aggregation is an essential molecular event in a wide variety of biological situations, and is a causal factor in several degenerative diseases. The aggregation of proteins also frequently hampers structural biological analyses, such as solution NMR studies. Therefore, precise detection and characterization of protein aggregation are of crucial importance for various research fields. In this study, we demonstrate that fluorescence correlation spectroscopy (FCS) using a single‐molecule fluorescence detection system enables the detection of otherwise invisible aggregation of proteins at higher protein concentrations, which are suitable for structural biological experiments, and consumes relatively small amounts of protein over a short measurement time. Furthermore, utilizing FCS, we established a method for high‐throughput screening of protein aggregation and optimal solution conditions for structural biological experiments.  相似文献   
117.
118.
In this study, we attempted to elucidate the E3 ubiquitin ligase for topo IIα. When cullins and VHL were ectopically expressed in HT1080 and HEK293T cells, topo IIα was degraded most prominently in cullin 2- and VHL-expressing cells. Cullin 2 and the β domain (aa 114-123) of VHL, a subunit of the ECV (Elongin B/C-cullin 2-VHL protein) complex, specifically interact with the ATPase domain of topo IIα. We identified that topo IIα associated with endogenous Elongin C. In HT1080 cells co-transfected with deletion mutants of topo IIα GRDD (glucose-regulated destruction domain) and VHL, topo IIα was degraded by VHL expression. These results demonstrate that ECV acts as E3 ubiquitin ligase targeting GRDD-independent topo IIα to the ubiquitin-proteasome pathway.  相似文献   
119.
In general, sensors of the sensory organs are ultrasensitive, so that a gain control function would be essential to protect the sensors from high intensity stimuli. This holds for the cochlea, an acoustic sensor of high sensitivity. Above all, the cochlea has to be equipped with the organ mechanically protecting the vulnerable sensor from high amplitude sounds. In addition, to expand the apparent dynamic range of the cochlear sensor, the stimulus intensity i.e. amplitude, should be considerably compressed in the cochlea. Of course, the amplitude should be compressed logarithmically so as not to miss the low level signals as much as possible. Thus, it is very convenient if a logarithmic compressor (LC) exists in the cochlea. Then, we examined literatures on this subject, and finally we reached the conclusion that the outer hair cell (OHC) system is none other than the LC. Here we propose ‘the LC theory’ that the OHC system is the LC properly compressing the signal intensity together with the tectorial membrane. However, this theory is quite contradictory to the generally accepted theory that OHCs are selective amplifiers of the basilar membrane vibrations (CA theory). In our opinion, this contradiction is due to that the logic of the CA theory is not sound. If you enumerate all possible explanations of experimental data and examine them logically, you will never conclude to the CA theory. In a word, the CA theory confuses the effect of the LC with that of the selective amplifier. Certainly, they are very mistakable. On the other hand, because the LC theory is a logical result of the well-known experimental data, it is consistent with any of them. Moreover, the LC theory can easily explain the causes of such phenomena as otoacoustic emissions, two-tone suppression and loudness recruitment that have been difficult to be reasonably explained up to now. Needless to say, if the OHC system is the LC, you will have to re-create the auditory theory fundamentally. This means that every aspect of otology such as the clinical examination, the design of cochlear implant and the etiology of hearing impairments should be re-evaluated. The conclusion is that the CA theory should be corrected as quickly as possible.  相似文献   
120.
We previously showed that the MEK inhibitor AZD6244 induced apoptosis in acute myelogenous leukemia (AML) HL60 cells. However, the mechanisms of AZD6244 to induce apoptosis remain to be fully elucidated. This study found that exposure of HL60 cells to AZD6244 down-regulated the levels of phosphor (p)-4E-binding protein 1 (4E-BP1), a substrate of mammalian target of rapamycin complex 1 (mTORC1), and anti-apoptotic protein Mcl-1. On the other hand, exposure of EOL-1 and MOLM13 cells to AZD6244 failed to induce apoptosis and levels of p-4E-BP1 and Mcl-1 were not down-regulated in these cells. These observations prompted us to hypothesize that down-regulation od 4E-BP1 and Mcl-1 might play an important role in AZD6244-mediated apoptosis. As expected, down-regulation of 4E-BP1 by an siRNA sensitized EOL-1 cells to AZD6244-mediated apoptosis in parallel with down-regulation of Mcl-1. Moreover, we found that blockade of mTORC1 by RAD001 synergistically enhanced the action of AZD6244 in leukemia cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号