首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   921篇
  免费   78篇
  999篇
  2022年   7篇
  2021年   13篇
  2020年   3篇
  2019年   9篇
  2018年   7篇
  2017年   11篇
  2016年   21篇
  2015年   35篇
  2014年   42篇
  2013年   60篇
  2012年   59篇
  2011年   69篇
  2010年   38篇
  2009年   40篇
  2008年   53篇
  2007年   69篇
  2006年   79篇
  2005年   52篇
  2004年   60篇
  2003年   48篇
  2002年   47篇
  2001年   18篇
  2000年   15篇
  1999年   23篇
  1998年   11篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   15篇
  1991年   12篇
  1990年   12篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有999条查询结果,搜索用时 15 毫秒
11.
Noradrenaline (NA) metabolism in the neocortex and hippocampus was examined in rats at 1, 24, and 48 h following 15 min of reversible forebrain ischemia. As assessed by the ratio of accumulated 3,4-dihydroxyphenylalanine (DOPA) to the tissue NA level after inhibition of DOPA decarboxylase, the NA turnover rates were markedly increased (120-148% above the control) at 1 h postischemia in both the neocortex and hippocampal formation (CA1 and CA3 plus dentate gyrus). The DOPA:NA ratio went back to control levels after longer postischemic survival times. The ratio between levels of the deaminated NA metabolite, 3,4-dihydroxyphenylethyleneglycol (DOPEG), and NA, which gives another measure of NA turnover rate, showed similar changes. In the neocortex and the CA3 plus dentate gyrus, the DOPEG:NA ratio was markedly increased (89-118%) 1 h after the ischemia, but this change had disappeared at 24 and 48 h. Thus, both the DOPA accumulation experiments and the NA and DOPEG measurements indicate that following transient forebrain ischemia, there is an increased NA turnover in the hippocampus and cortex only in the early recirculation period and not after longer postischemic survival times. The degree of neuronal necrosis in the CA1 region was examined light microscopically on celestine blue-acid fuchsin-stained sections at 24, 48, and 96 h following the ischemic insult. The neuronal damage in CA1 was sparse after 24 h of recovery, had increased markedly after 48 h, and was very pronounced at 96 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
12.
In Pseudomonas paucimobilis UT26, gamma-hexachlorocyclohexane (gamma-HCH) is converted to 2,5-dichloro-2,5-cyclohexadiene-1,4-diol (2,5-DDOL), which is then metabolized to 2,5-dichlorohydroquinone. Here, we isolated from the genomic library of UT26 two genes which expressed 2,5-DDOL dehydrogenase activity when they were transformed into P. putida and Escherichia coli. Both gene products had an apparent molecular size of 28 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first gene, named linC, located separately from the two genes (linA and linB) which we had already cloned as genes involved in the gamma-HCH degradation. The other, named linX, located about 1 kb upstream of the linA gene encoding gamma-HCH dehydrochlorinase. A gamma-HCH degradation-negative mutant, named UT72, which lacked the whole linC gene but had the intact linX gene was isolated. The linC gene given in a plasmid could complement UT72. These results strongly suggest that the linC gene but not the linX gene is essential for the assimilation of gamma-HCH in UT26. Deduced amino acid sequences of LinC and LinX show homology to those of members of the short-chain alcohol dehydrogenase family.  相似文献   
13.
An improved methenamine-silver impregnation method is presented which exhibits sensitivity for amyloid substances comparable to that of anti-β protein immunostaining. In optimally treated sections, this technique stained both β-amyloid deposits and neurofibrillary tangles, which are known to have a β-pleated structure. This simple procedure allows a large number of sections to be stained for routine examination.  相似文献   
14.
We examined the effects of endothelin-1 (ET-1) on pulmonary hemodynamic and transvascular fluid filtration and the conversion of big endothelin-1 (big ET-1), a precursor of ET-1, in isolated perfused rabbit lungs at constant vascular and airway pressures. Furthermore we examined whether ET-1 contributes to cyclooxygenase metabolism. The perfusate flow decreased significantly after bolus administration of 1 or 0.1 nmol of ET-1. Lung weight did not increase throughout the experimental period. Big ET-1- (1 nmol) induced decrease in the flow was slow in developing, although the maximum response was comparable to that induced by the same dose of ET-1. The concentration of bit ET-1 in the perfusate progressively decreased, while that of ET-1 increased in a time-dependent manner. Phosphoramidon, an inhibitor of metalloproteinase, suppressed the pressor effect of big ET-1 (P less than 0.01) and the increase in the concentration of ET-1 in the perfusate (P less than 0.05). The present findings provide the first evidence suggesting that the potent vasocontractile effect of big ET-1 in pulmonary circulation can be attributed to the production of ET-1 by the conversion from big ET-1 in the vascular bed. ET-1-induced perfusate flow changes were not affected by indomethacin, and the concentration of 6-ketoprostaglandin F1 alpha, a metabolite of prostacyclin, did not increase after ET-1 administration.  相似文献   
15.
Maeda, Seiji, Takashi Miyauchi, Michiko Sakane, MakotoSaito, Shinichi Maki, Katsutoshi Goto, and Mitsuo Matsuda. Does endothelin-1 participate in the exercise-induced changes of blood flowdistribution of muscles in humans? J. Appl.Physiol. 82(4): 1107-1111, 1997.Endothelin-1(ET-1) is an endothelium-derived potent vasoconstrictor peptide thatpotentiates contractions to norepinephrine in human vessels. Wepreviously reported that the circulating plasma concentration of ET-1is significantly increased after exercise (S. Maeda, T. Miyauchi, K. Goto, and M. Matsuda. J. Appl.Physiol. 77: 1399-1402, 1994). Tostudy the roles of ET-1 during and after exercise, we investigatedwhether endurance exercise affects the production of ET-1 in thecirculation of working muscles and nonworking muscles. Male athletesperformed one-leg cycle ergometer exercise of 30-min duration atintensity of 110% of their individual ventilatory threshold. Plasmaconcentrations of ET-1 in both sides of femoral veins (veins in theworking leg and nonworking leg) and in the femoral artery (artery inthe nonworking leg) were measured before and afterexercise. The plasma ET-1 concentration in the femoralvein in the nonworking leg was significantly increased after exercise,whereas that in femoral vein in the working leg was not changed. Thearteriovenous difference in ET-1 concentration was significantlyincreased after exercise in the circulation of the nonworking leg butnot of the working leg, which suggests that the production of ET-1 wasincreased in the circulation of the nonworking leg by exercise. Thepresent study also demonstrated that the plasma norepinephrineconcentrations were elevated by exercise in the femoral veins of boththe working and nonworking legs, suggesting that the sympathetic nerveactivity was augmented in both legs during exercise. Therefore, thepresent study demonstrates the possibility that the increase inproduction of ET-1 in nonworking muscles may cause vasoconstriction andhence decrease blood flow in nonworking muscles through its directvasoconstrictive action or through an indirect effect of ET-1 toenhance vasoconstrictions to norepinephrine and that these responsesmay be helpful in increasing blood flow in workingmuscles. We propose that endogenous ET-1 contributes tothe exercise-induced redistribution of blood flow in muscles.

  相似文献   
16.
The cDNA clone for rat liver microsomal aldehyde dehydrogenase (msALDH) was isolated and sequenced. The deduced amino acid sequence consisting of 484 amino acid residues revealed that the carboxyl-terminal region of msALDH has a hydrophobic segment, which is probably important for the insertion of this enzyme into the endoplasmic reticulum membrane. COS-1 cells transfected with the expression vector pcD containing the full-length cDNA showed that the active enzyme was expressed and localized mainly on the cytoplasmic surface of the endoplasmic reticulum membranes. It has been proposed that ALDH isozymes form a superfamily consisting of class 1, 2, and 3 ALDHs (Hempel, J., Harper, K., and Lindahl, R., (1989) Biochemistry 28, 1160-1167). Comparison of the amino acid sequence of rat liver msALDH with those of rat other class ALDHs showed that msALDH was 24.2, 24.0, and 65.5% identical to phenobarbital-inducible ALDH (variant class 1), mitochondrial ALDH (class 2), and tumor-associated ALDH (class 3), respectively. Several amino acid residues common to the other known ALDHs, however, were found to be conserved in msALDH. Based on these results, we proposed to classify msALDH as a new type, class 4 ALDH.  相似文献   
17.
In search of factors mitigating the final outcome of ischemic and epileptic brain damage, we tested a novel dibenzoxazepine derivative (BY-1949), as the compound has been shown to be effective under these two conditions. First, using rat brain, we assessed whether or not BY-1949 affects the Na+,K(+)-ATPase activity. Although in vitro applications of either BY-1949 or its three major metabolites did not cause any apparent effects, both acute and chronic oral administrations of the compound (10 mg/kg) invariably increased the Na+,K(+)-ATPase activity in the synaptosomal plasma membranes by increasing Vmax values. Second, it was shown by this study that the drug treatment caused marked increases in the uptake of both glutamic acid and gamma-aminobutyric acid into the synaptosomes. These results suggest that the activity against ischemic/epileptic brain damage by BY-1949 is explicable, at least partly, in terms of improvement of ionic derangements across the neural membranes via Na+,K(+)-ATPase activation.  相似文献   
18.
Blood coagulation or plasma clotting caused generation of a monocyte chemotactic factor(s) in vitro. The chemotactic factor, of which the apparent molecular mass was 75 kDa, shared antigenicity with complement C5 and possessed the affinity to monocytes, but not to polymorphonuclear leukocytes. The generation of the chemotactic factor was hindered in the presence of a thiol enzyme inhibitor, p-chloromercuriphenyl sulfonic acid, at the concentration of 1 mmol/l, although the gelation of plasma was apparently completed. Furthermore, the generation of chemotactic factor was not observed when a plasma deficient in blood coagulation factor XIII, which is a precursor of a thiol enzyme, plasma transglutaminase, was used; and the activity normally appeared when the deficient plasma was reconstituted with purified factor XIII or with a tissue transglutaminase prior to clotting. When the human sera were injected into guinea pig skin, the serum derived from normal plasma or from the reconstituted factor XIII deficient one caused mononuclear cell infiltration, however, the serum from the deficient plasma without reconstitution infiltrated to a significantly smaller extent. These results indicated that the complement system was initiated somehow during the clotting process resulting in the generation of the C5-derived monocyte chemotactic factor in cooperation with factor XIIIa (activated factor XIII).  相似文献   
19.
Ischemia followed by reflow often results in tissue injury. Although reactive oxygens seem to play an important role in the pathogenesis of postischemic reflow-induced tissue injury, the mechanism and an efficient way to inhibit oxidative injury are not known. We studied the mechanism by which hepatic transport function was inhibited by a transient occlusion followed by reflow of the portal vein and hepatic artery by using a superoxide dismutase (SOD) derivative (SM-SOD) which circulates bound to albumin with a half-life of 6 h. Occlusion of the hepatic vessels for 20 min followed by reflow for 60 min significantly inhibited transhepatic transport of cholephilic ligands, such as bromosulfophthalein (BSP) and taurocholic acid. Intravenous administration of SM-SOD markedly inhibited the reflow-induced decrease in transhepatic transport of these ligands. Thiobarbituric acid - reactive metabolites (TBAR) in the liver and plasma remained unchanged during occlusion and reflow, while TBAR in the bile increased significantly. Intravenous injection of SM-SOD inhibited the reflow-induced increase in biliary TBAR. Xanthine oxidase activity in plasma also increased during occlusion and reflow by an SM-SOD-inhibitable mechanism. Polymorphonuclear leukocyte-dependent chemiluminescence of the peripheral blood remained unchanged during occlusion, but increased markedly with time after reflow. SM-SOD also inhibited the increase in chemiluminescence almost completely. These and other results suggested that the superoxide radical and/or its metabolite(s) might play an important role in the pathogenesis of the reflow-induced liver injury and that SM-SOD might be useful for studying the mechanism for tissue injury caused by oxygen toxicity.  相似文献   
20.
Studies were made on changes in the contents of α-amylase (EC 3.2.1.1) in the pancreas and parotid gland of rats during postnatal devlopment, on the premature induction of this enzyme by hormones and on the existence of specific glucocorticoid receptors in these tissues.The amylase content in the pancreas increased from the 9th day after birth and reached the adult level on the 28th day, its content in the parotid gland increased rapidly from the 16th to 28th day after birth and then rose more gradually to the adult level.Injection of dexamethasone into rats 6–8 days after birth induced increase in the amylase of the pancreas but not the parotid gland. However, injection of dexamethasone into weanling rats 21–23 days after birth resulted in precocious induction of amylase in both tissues.Specific glucocorticoid receptors were detectable in the parotid gland of rats from 6 days after birth but were almost undetectable in the pancreas until adolescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号