首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   952篇
  免费   73篇
  2022年   6篇
  2021年   15篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   9篇
  2016年   16篇
  2015年   37篇
  2014年   41篇
  2013年   65篇
  2012年   63篇
  2011年   67篇
  2010年   39篇
  2009年   35篇
  2008年   54篇
  2007年   75篇
  2006年   65篇
  2005年   51篇
  2004年   53篇
  2003年   59篇
  2002年   52篇
  2001年   20篇
  2000年   17篇
  1999年   24篇
  1998年   10篇
  1997年   2篇
  1996年   13篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   15篇
  1991年   7篇
  1990年   13篇
  1989年   7篇
  1988年   9篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1978年   3篇
  1976年   2篇
  1973年   2篇
  1972年   1篇
  1971年   4篇
  1970年   4篇
  1969年   5篇
  1966年   2篇
  1965年   1篇
排序方式: 共有1025条查询结果,搜索用时 78 毫秒
101.
Gut hormone gastric inhibitory polypeptide (GIP) stimulates insulin secretion from pancreatic β-cells upon ingestion of nutrients. Inhibition of GIP signaling prevents the onset of obesity and consequent insulin resistance induced by high-fat diet. In this study, we investigated the role of GIP in accumulation of triglycerides into adipocytes and in fat oxidation peripherally using insulin receptor substrate (IRS)-1-deficient mice and revealed that IRS-1−/−GIPR−/− mice exhibited both reduced adiposity and ameliorated insulin resistance. Furthermore, increased gene expression of CD36 and UCP2 in liver, and increased expression and enzyme activity of 3-hydroxyacyl-CoA dehydrogenase in skeletal muscle of IRS-1−/−GIPR−/− mice might contribute to the lower respiratory quotient and the higher fat oxidation in light phase. These results suggest that GIP plays a crucial role in switching from fat oxidation to fat accumulation under the diminished insulin action as a potential target for secondary prevention of insulin resistance.  相似文献   
102.
The JC virus (JCV) genotyping method was used to gain insights into the population history of the Saami and the Finns, both speaking Finno-Ugric languages and living in close geographic proximity. Urine samples from Saami and Finns, collected in northern and southern Finland, respectively, were used to amplify a 610-bp JCV-DNA region containing abundant type-specific mutations. Based on restriction site polymorphisms in the amplified fragments, we classified JCV isolates into one of the three superclusters of JCV, type A, B, or C. All 15 Saami isolates analyzed and 41 of 43 Finnish isolates analyzed were classified as type A, the European type, and two samples from Finns were classified as type B, the African/Asian type. We then amplified and sequenced a 583-bp JCV-DNA region from the type A isolates of Saami and Finns. According to type-determining nucleotides within the region, we classified type A isolates into EU-a1, -a2, or -b. Most type A isolates from Saami were classified as EU-a1, while type A isolates from Finns were distributed among EU-a1, EU-a2, and EU-b. This trend in the JCV-genotype distribution was statistically significant. On a phylogenetic tree based on complete sequences, most of the type A isolates from Saami were clustered in a single clade within EU-a1, while those from Finns were distributed throughout EU-a1, EU-a2, and EU-b. These findings are discussed in the context of the population history of the Saami and the Finns. This study provides new complete JCV DNA sequences derived from populations of anthropological interest.  相似文献   
103.
Recent studies in both animal models and clinical trials have demonstrated that the avidity of T cells is a major determinant of antitumor and antiviral immunity. In this study, we evaluated several different vaccine strategies for their ability to enhance both the quantity and avidity of CTL responses. CD8(+) T cell quantity was measured by tetramer binding precursor frequency, and avidity was measured by both tetramer dissociation and quantitative cytolytic function. We have evaluated a peptide, a viral vector expressing the Ag transgene alone, with one costimulatory molecule (B7-1), and with three costimulatory molecules (B7-1, ICAM-1, and LFA-3), with anti-CTLA-4 mAb, with GM-CSF, and combinations of the above. We have evaluated these strategies in both a foreign Ag model using beta-galactosidase as immunogen, and in a "self" Ag model, using carcinoembryonic Ag as immunogen in carcinoembryonic Ag transgenic mice. The combined use of several of these strategies was shown to enhance not only the quantity, but, to a greater magnitude, the avidity of T cells generated; a combination strategy is also shown to enhance antitumor effects. The results reported in this study thus demonstrate multiple strategies that can be used in both antitumor and antiviral vaccine settings to generate higher avidity host T cell responses.  相似文献   
104.
Novel non-natural amino acids carrying a dansyl fluorescent group were designed, synthesized, and incorporated into various positions of streptavidin by using a CGGG four-base codon in an Escherichia coli in vitro translation system. 2,6-Dansyl-aminophenylalanine (2,6-dnsAF) was found to be incorporated into the protein more efficiently than 1,5-dansyl-lysine, 2,6-dansyl-lysine, and 1,5-dansyl-aminophenylalanine. Fluorescence measurements indicate that the position-specific incorporation of the 2,6-dnsAF is a useful technique to probe protein structures. These results also indicate that well-designed non-natural amino acids carrying relatively large side chains can be accepted as substrates of the translation system.  相似文献   
105.
Peroxisome proliferator-activated receptor γ (PPARγ) plays a central role in adipocyte differentiation and insulin sensitivity. Although PPARγ also appears to regulate diverse cellular processes in other cell types such as lymphocytes, the detailed mechanisms remain unclear. In this study, we established a lentivirus-mediated short hairpin RNA expression system and identified a potent short hairpin RNA which suppresses PPARγ expression, resulting in marked inhibition of preadipocyte-to-adipocyte differentiation in 3T3-L1 cells. Our PPARγ-knockdown method will serve to clarify the PPARγ pathway in various cell types in vivo and in vitro, and will facilitate the development of therapeutic applications for a variety of diseases.  相似文献   
106.
Scavenger receptor expressed by endothelial cells I (SREC-I) is a novel endocytic receptor for acetylated low density lipoprotein (LDL). Here we show that SREC-I is expressed in a wide variety of tissues, including macrophages and aortas. Lipopolysaccharide (LPS) robustly stimulated the expression of SREC-I in macrophages. In an initial attempt to clarify the role of SREC-I in the uptake of modified lipoproteins as well as in the development of atherosclerosis, we generated mice with a targeted disruption of the SREC-I gene by homologous recombination in embryonic stem cells. To exclude the overwhelming effect of the type A scavenger receptor (SR-A) on the uptake of Ac-LDL, we further generated mice lacking both SR-A and SREC-I (SR-A(-/-);SREC-I(-/-)) by cross-breeding and compared the uptake and degradation of Ac-LDL in the isolated macrophages. The contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 85 and 5%, respectively, in a non-stimulated condition. LPS increased the uptake and degradation of Ac-LDL by 1.8-fold. In this condition, the contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 90 and 6%, respectively. LPS increased the absolute contribution of SR-A and SREC-I by 1.9- and 2.3-fold, respectively. On the other hand, LPS decreased the absolute contribution of other pathways by 31%. Consistently, LPS did not increase the expression of other members of the scavenger receptor family such as CD36. In conclusion, SREC-I serves as a major endocytic receptor for Ac-LDL in LPS-stimulated macrophages lacking SR-A, suggesting that it has a key role in the development of atherosclerosis in concert with SR-A.  相似文献   
107.
SH2-containing inositol phosphatase 2 (SHIP2) is a physiologically important negative regulator of insulin signaling by hydrolyzing the phosphatidylinositol (PI) 3-kinase product PI 3,4,5-trisphosphate in the target tissues of insulin. Targeted disruption of the SHIP2 gene in mice resulted in increased insulin sensitivity without affecting biological systems other than insulin signaling. Therefore, we investigated the molecular mechanisms by which SHIP2 specifically regulates insulin-induced metabolic signaling in 3T3-L1 adipocytes. Insulin-induced phosphorylation of Akt, one of the molecules downstream of PI3-kinase, was inhibited by expression of wild-type SHIP2, whereas it was increased by expression of 5'-phosphatase-defective (DeltaIP) SHIP2 in whole cell lysates. The regulatory effect of SHIP2 was mainly seen in the plasma membrane (PM) and low density microsomes but not in the cytosol. In this regard, following insulin stimulation, a proportion of Akt2, and not Akt1, appeared to redistribute from the cytosol to the PM. Thus, insulin-induced phosphorylation of Akt2 at the PM was predominantly regulated by SHIP2, whereas the phosphorylation of Akt1 was only minimally affected. Interestingly, insulin also elicited a subcellular redistribution of both wild-type and DeltaIP-SHIP2 from the cytosol to the PM. The degree of this redistribution was inhibited in part by pretreatment with PI3-kinase inhibitor. Although the expression of a constitutively active form of PI3-kinase myr-p110 also elicited a subcellular redistribution of SHIP2 to the PM, expression of SHIP2 appeared to affect the myr-p110-induced phosphorylation, and not the translocation, of Akt2. Furthermore, insulin-induced phosphorylation of Akt was effectively regulated by SHIP2 in embryonic fibroblasts derived from knockout mice lacking either insulin receptor substrate-1 or insulin receptor substrate-2. These results indicate that insulin specifically stimulates the redistribution of SHIP2 from the cytosol to the PM independent of 5'-phosphatase activity, thereby regulating the insulin-induced translocation and phosphorylation of Akt2 at the PM.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号