首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   893篇
  免费   70篇
  国内免费   1篇
  2022年   8篇
  2021年   17篇
  2020年   4篇
  2019年   10篇
  2018年   7篇
  2017年   7篇
  2016年   23篇
  2015年   38篇
  2014年   41篇
  2013年   52篇
  2012年   58篇
  2011年   52篇
  2010年   34篇
  2009年   37篇
  2008年   57篇
  2007年   61篇
  2006年   66篇
  2005年   48篇
  2004年   54篇
  2003年   55篇
  2002年   56篇
  2001年   24篇
  2000年   24篇
  1999年   21篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1992年   5篇
  1991年   5篇
  1990年   8篇
  1988年   2篇
  1987年   2篇
  1986年   8篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1971年   3篇
  1966年   2篇
排序方式: 共有964条查询结果,搜索用时 15 毫秒
31.
Biomechanics and Modeling in Mechanobiology - Recent experimental evidence points to the possibility that cell surface-associated caveolae may participate in mechanotransduction. The particular...  相似文献   
32.
1. Both activities of NADH- and NADPH-linked aquacobalamin reductases were found in some human tissues, liver, kidney pancreas, heart, spleen, lung, cerebrum, cerebellum, adrenal glands, stomach, duodenum, jejunum, ileum, colon and bone marrow. 2. Human liver contained both enzymes with higher specific activities than any other tissues. 3. The liver NADH-linked enzyme was distributed in both mitochondrial (approx. 60%) and microsomal (40%) fractions; similar to the distribution of the NADPH-linked enzyme, but of which 40% activity was found in the mitochondria and the remaining activity was recovered in the microsomes. 4. The results suggest that the synthetic systems of the cobalamin coenzymes occur in both mitochondria and microsomes of human liver.  相似文献   
33.
34.
The nucleotide sequences of three independent fragments (designated no. 3, 4, and 9; each 15–20 kb in size) of the genome of alkaliphilic Bacillus sp. C-125 cloned in a λ phage vector have been determined. Thirteen putative open reading frames (ORFs) were identified in sequenced fragment no. 3 and 11 ORFs were identified in no. 4. Twenty ORFs were also identified in fragment no. 9. All putative ORFs were analyzed in comparison with the BSORF database and non-redundant protein databases. The functions of 5 ORFs in fragment no. 3 and 3 ORFs in fragment no. 4 were suggested by their significant similarities to known proteins in the database. Among the 20 ORFs in fragment no. 9, the functions of 11 ORFs were similarly suggested. Most of the annotated ORFs in the DNA fragments of the genome of alkaliphilic Bacillus sp. C-125 were conserved in the Bacillus subtilis genome. The organization of ORFs in the genome of strain C-125 was found to differ from the order of genes in the chromosome of B. subtilis, although some gene clusters (ydh, yqi, yer, and yts) were conserved as operon units the same as in B. subtilis. Received: April 17, 1998 / Accepted: June 23, 1998  相似文献   
35.
We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.  相似文献   
36.
We prepared a series of length variants of the J3/4 domain of Escherichia coli ribonuclease P (RNase P) ribozyme: the four-base long J3/4 domain (A(62)G(63)G(64)A(65)) was replaced with GGA (denoted DeltaA), GA (DeltaAG), A (DeltaAGG), AAGGA (SigmaA), AAAGGA (SigmaAA), and AAAAGGA (SigmaAAA). The results indicated that truncating and inserting operations of the J3/4 domain drastically reduced ribozyme activity (WT>SigmaAA>SigmaA>SigmaAAA>DeltaAG>DeltaA, DeltaAGG), but did not affect the cleavage site selection of a substrate by the ribozyme. The reduced ribozyme activity of each mutant was rescued to some extent by the addition of a high concentration of magnesium ions. Our data indicate that the conserved AGGA sequence was important for efficient ribozyme reactions, and suggested that the length mutations affected ribozyme activity through metal ion binding steps.  相似文献   
37.
Above a certain level of cerebral activation the brain increases its uptake of glucose more than that of O(2), i.e., the cerebral metabolic ratio of O(2)/(glucose + 12 lactate) decreases. This study quantified such surplus brain uptake of carbohydrate relative to O(2) in eight healthy males who performed exhaustive exercise. The arterial-venous differences over the brain for O(2), glucose, and lactate were integrated to calculate the surplus cerebral uptake of glucose equivalents. To evaluate whether the amount of glucose equivalents depends on the time to exhaustion, exercise was also performed with beta(1)-adrenergic blockade by metoprolol. Exhaustive exercise (24.8 +/- 6.1 min; mean +/- SE) decreased the cerebral metabolic ratio from a resting value of 5.6 +/- 0.2 to 3.0 +/- 0.4 (P < 0.05) and led to a surplus uptake of glucose equivalents of 9 +/- 2 mmol. beta(1)-blockade reduced the time to exhaustion (15.8 +/- 1.7 min; P < 0.05), whereas the cerebral metabolic ratio decreased to an equally low level (3.2 +/- 0.3) and the surplus uptake of glucose equivalents was not significantly different (7 +/- 1 mmol; P = 0.08). A time-dependent cerebral surplus uptake of carbohydrate was not substantiated and, consequently, exhaustive exercise involves a brain surplus carbohydrate uptake of a magnitude comparable with its glycogen content.  相似文献   
38.
In the accompanying paper, we found, using molecular dynamics calculations, four domains of the ras-specific SOS guanine nucleotide exchange protein (residues 589-601, 654-675, 746-761, and 980-989) that differ markedly in conformation when SOS is complexed with either oncogenic (Val 12-) ras-p21 or wild-type ras-p21. Three of these domains contain three crystallographically undefined loops that we modeled in these calculations, and one is a newly identified non-loop domain containing SOS residues 980-989. We have now synthesized peptides corresponding to these four domains and find that all of them block Val 12-ras-p21-induced oocyte maturation. All of them also block insulin-induced oocyte maturation, but two of these peptides, corresponding to SOS residues 589-601 and 980-989, block oncogenic ras to a significantly greater extent. These results suggest that SOS contains domains, including the three loop domains, that are important for ras signaling and that several of these domains can activate different pathways specific to oncogenic or wild-type ras-p21.  相似文献   
39.
Oncogenic ras-p21 directly activates jun-N-terminal kinase (JNK) and its substrate, jun as a unique step on its mitogenic signal transduction pathway. This activation is blocked by the specific JNK-jun inhibitor, glutathione-S-transferase-pi (GST-pi). Four domains of GST-pi have been implicated in this regulatory function: 34-50, 99-121, 165-182, and 194-201. The 34-50 domain is unique in that it does not affect GST-pi binding to JNK-jun but blocks jun phosphorylation by JNK. We now find that it completely blocks oncogenic (Val 12-) ras-p21-induced oocyte maturation but has no effect on insulin-induced oocyte maturation. Because the latter process requires activation of wild-type ras-p21, this peptide appears to be specific for inhibiting only the oncogenic form of ras-p21, suggesting its use in treating ras-induced tumors.  相似文献   
40.
When continuation of exercise calls for a "will," the cerebral metabolic ratio of O2 to (glucose + lactate) decreases, with the largest reduction (30-50%) at exhaustion. Because a larger effort is required to exercise with the arms than with the legs, we tested the hypothesis that the reduction in the cerebral metabolic ratio would become more pronounced during arm cranking than during leg exercise. The cerebral arterial-venous differences for blood-gas variables, glucose, and lactate were evaluated in two groups of eight subjects during exhaustive arm cranking and leg exercise. During leg exercise, exhaustion was elicited after 25 +/- 6 (SE) min, and the cerebral metabolic ratio was reduced from 5.6 +/- 0.2 to 3.5 +/- 0.2 after 10 min and to 3.3 +/- 0.3 at exhaustion (P < 0.05). Arm cranking lasted for 35 +/- 4 min and likewise decreased the cerebral metabolic ratio after 10 min (from 6.7 +/- 0.4 to 5.0 +/- 0.3), but the nadir at exhaustion was only 4.7 +/- 0.4, i.e., higher than during leg exercise (P < 0.05). The results demonstrate that exercise decreases the cerebral metabolic ratio when a conscious effort is required, irrespective of the muscle groups engaged. However, the comparatively small reduction in the cerebral metabolic ratio during arm cranking suggests that it is influenced by the exercise paradigm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号