首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2368篇
  免费   130篇
  2022年   12篇
  2021年   27篇
  2020年   13篇
  2019年   28篇
  2018年   22篇
  2017年   24篇
  2016年   39篇
  2015年   82篇
  2014年   77篇
  2013年   171篇
  2012年   135篇
  2011年   120篇
  2010年   87篇
  2009年   87篇
  2008年   147篇
  2007年   142篇
  2006年   116篇
  2005年   125篇
  2004年   137篇
  2003年   131篇
  2002年   104篇
  2001年   68篇
  2000年   62篇
  1999年   46篇
  1998年   19篇
  1997年   23篇
  1996年   18篇
  1995年   22篇
  1994年   21篇
  1993年   23篇
  1992年   41篇
  1991年   40篇
  1990年   29篇
  1989年   32篇
  1988年   21篇
  1987年   18篇
  1986年   16篇
  1985年   19篇
  1984年   21篇
  1983年   10篇
  1982年   15篇
  1981年   11篇
  1980年   7篇
  1979年   6篇
  1978年   13篇
  1977年   16篇
  1975年   7篇
  1974年   13篇
  1973年   7篇
  1972年   5篇
排序方式: 共有2498条查询结果,搜索用时 15 毫秒
121.
SCF(Fbs1) is a ubiquitin ligase that functions in the endoplasmic reticulum (ER)-associated degradation pathway. Fbs1/Fbx2, a member of the F-box proteins, recognizes high-mannose oligosaccharides. Efficient binding to an N-glycan requires di-N-acetylchitobiose (chitobiose). Here we report the crystal structures of the sugar-binding domain (SBD) of Fbs1 alone and in complex with chitobiose. The SBD is composed of a ten-stranded antiparallel beta-sandwich. The structure of the SBD-chitobiose complex includes hydrogen bonds between Fbs1 and chitobiose and insertion of the methyl group of chitobiose into a small hydrophobic pocket of Fbs1. Moreover, NMR spectroscopy has demonstrated that the amino acid residues adjoining the chitobiose-binding site interact with the outer branches of the carbohydrate moiety. Considering that the innermost chitobiose moieties in N-glycans are usually involved in intramolecular interactions with the polypeptide moieties, we propose that Fbs1 interacts with the chitobiose in unfolded N-glycoprotein, pointing the protein moiety toward E2 for ubiquitination.  相似文献   
122.
Mitochondria and autoimmunity in primary biliary cirrhosis   总被引:5,自引:0,他引:5  
Primary biliary cirrhosis is an enigmatic autoimmune liver disease that predominantly affects women and is characterized by antimitochondrial antibodies and specific destruction of small bile ducts. Interestingly, patients with this disease not only have high titer antibodies to mitochondria, but also highly directed, liver-specific CD4 and CD8 cells directed at the same mitochondrial autoantigens. These mitochondrial autoantigens are all members of the 2-oxo dehydrogenase complex family and include the E2 component of pyruvate dehydrogenase as the major autoantigen. Moreover, the epitopes recognized by CD4, CD8 T cells and autoantibody, are all directed within the same region, namely the lipoyl domain of pyruvate dehydrogenase complex-E2. All cells in the body have mitochondria but there appear to be specific destruction of biliary cells. We believe that this specific destruction is secondary to a highly directed mucosal response that focuses on biliary cells because of the involvement of a polymeric immunoglobulin receptor, the presence of immunoglobulin A in mucosal secretions, and the unique apoptotic properties of biliary epithelium.  相似文献   
123.
The use of granulocyte colony stimulating factor (G-CSF) for recovery from neutropenia has been established; however, acute lung injury due to G-CSF-induced polymorphonuclear leukocyte (PMN) activation is a serious complication. This study was designed to compare the activation of PMN with single bolus administration and continuous administration of G-CSF. Healthy volunteers (age 33.8 +/- 1.4 yr; n = 6) received a single bolus injection of 50 microm/m2 of G-CSF (SI; n = 6) or continuous subcutaneous injection of 50 microm/m2 of G-CSF for 24 h (CI; n = 6) and were followed for 48 h. Circulating leukocyte counts, markers of activation on PMN, and circulating levels of G-CSF, IL-6, and PMN elastase were measured. SI rapidly increased serum G-CSF levels, which peaked at 4 h, whereas CI gradually increased G-CSF levels, which remained at a steady level from 8 to 24 h. SI caused a rapid decrease in PMN counts at 0.5 h followed by sustained increase to peak at 12 h. CI gradually increased PMN counts, which peaked at 24 h, but the peak values were not significantly different between the groups. SI-induced activation of PMN, which was characterized by increased expression of CD11b, decreased expression of L-selectin, and increased F-actin content, led to increases in serum IL-6 and PMN elastase level. Such changes were all attenuated with CI (P < 0.05). We conclude that continuous subcutaneous injection of G-CSF resulted in a marrow response similar to that to a single injection but yielded reduced PMN activation.  相似文献   
124.
We examined the role of matrix metalloproteinases (MMPs), tissue inhibitors of MMP (TIMPs), and plasminogen activator (PA) in transmyocardial laser revascularization (TMLR)-induced angiogenesis. TMLR was accomplished with a carbon dioxide laser in seven dogs whose left anterior descending coronary artery (LAD) was ligated. Seven control dogs underwent only LAD ligation, and four dogs underwent a sham operation, consisting only of a left thoracotomy. Two weeks later, transmural myocardial samples were harvested from the distributions of the LAD and the left circumflex artery for substrate zymography, immunohistochemical staining, and in situ zymography. MMP-1, MMP-2, TIMP-1, TIMP-2, and urokinase-type PA levels in the distribution of the LAD were higher in the laser group than in the control or sham group. Counts of von Willebrand factor-positive microvessels and smooth muscle alpha-actin-positive arterioles demonstrated that the angiogenesis and ateriogenesis was promoted in the laser group and correlated directly with the number of MMP-stained microvessels. We conclude that TMLR induces the expression of MMPs, TIMPs, and urokinase-type PA and that these proteinases play an important role in angiogenesis after TMLR.  相似文献   
125.
The metabolic rate and its scaling relationship to colony size were studied in the colonial ascidian Botrylloides simodensis. The colonial metabolic rate, measured by the oxygen consumption rate (V(O2) in millilitres of O(2) per hour) and the colony mass (wet weight M(w) in grams) showed the allometric relationship (V(O2) = 0.0412 M(w)(0.799). The power coefficient was statistically not different from 0.75, the value for unitary organisms. The size of the zooids and the tunic volume fraction in a colony were kept constant irrespective of the colonial size. These results, together with the two-dimensional colonial shape, excluded shape factors and colonial composition as possible causes of allometry. Botryllid ascidians show a takeover state in which all the zooids of the parent generation in a colony degenerate and zooids of a new generation develop in unison. The media for connection between zooids such as a common drainage system and connecting vessels to the common vascular system experienced reconstruction. The metabolic rate during the takeover state was halved and was directly proportional to the colonial mass. The scaling thus changed from being allometric to isometric. The alteration in the scaling that was associated with the loss of the connection between the zooids strongly support the hypothesis that the allometry was derived from mutual interaction among the zooids. The applicability of this hypothesis to unitary organisms is discussed.  相似文献   
126.
Peripheral T lymphocytes undergo activation by antigenic stimulation and function in hypoxic areas of inflammation. We demonstrated in CD3-positive human T cells accumulating in inflammatory tissue expression of the hypoxia-inducible factor-1alpha (HIF-1alpha), indicating a role of hypoxia-mediated signals in regulation of T cell function. Surprisingly, accumulation of HIF-1alpha in human T cells required not only hypoxia but also TCR/CD3-mediated activation. Moreover, hypoxia repressed activation-induced cell death (AICD) by TCR/CD3 stimulation, resulting in an increased survival of the cells. Microarray analysis suggested the involvement of HIF-1 target gene product adrenomedullin (AM) in this process. Indeed, AM receptor antagonist abrogated hypoxia-mediated repression of AICD. Moreover, synthetic AM peptides repressed AICD even in normoxia. Taken together, we propose that hypoxia is a critical determinant of survival of the activated T cells via the HIF-1alpha-AM cascade, defining a previously unknown mode of regulation of peripheral immunity.  相似文献   
127.
Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).  相似文献   
128.
Amyloid precursor protein (APP), the precursor of Abeta, has been shown to function as a cell surface receptor that mediates neuronal cell death by anti-APP antibody. The c-Jun N-terminal kinase (JNK) can mediate various neurotoxic signals, including Abeta neurotoxicity. However, the relationship of APP-mediated neurotoxicity to JNK is not clear, partly because APP cytotoxicity is Abeta independent. Here we examined whether JNK is involved in APP-mediated neuronal cell death and found that: (i) neuronal cell death by antibody-bound APP was inhibited by dominant-negative JNK, JIP-1b and SP600125, the specific inhibitor of JNK, but not by SB203580 or PD98059; (ii) constitutively active (ca) JNK caused neuronal cell death and (iii) the pharmacological profile of caJNK-mediated cell death closely coincided with that of APP-mediated cell death. Pertussis toxin (PTX) suppressed APP-mediated cell death but not caJNK-induced cell death, which was suppressed by Humanin, a newly identified neuroprotective factor which inhibits APP-mediated cytotoxicity. In the presence of PTX, the PTX-resistant mutant of Galphao, but not that of Galphai, recovered the cytotoxic action of APP. These findings demonstrate that JNK is involved in APP-mediated neuronal cell death as a downstream signal transducer of Go.  相似文献   
129.
Hepatitis C virus (HCV) core protein plays an important role in the formation of the viral nucleocapsid and a regulatory protein involved in hepatocarcinogenesis. In this study, we have identified proteasome activator PA28gamma (11S regulator gamma) as an HCV core binding protein by using yeast two-hybrid system. This interaction was demonstrated not only in cell culture but also in the livers of HCV core transgenic mice. These findings are extended to human HCV infection by the observation of this interaction in liver specimens from a patient with chronic HCV infection. Neither the interaction of HCV core protein with other PA28 subtypes nor that of PA28gamma with other Flavivirus core proteins was detected. Deletion of the PA28gamma-binding region from the HCV core protein or knockout of the PA28gamma gene led to the export of the HCV core protein from the nucleus to the cytoplasm. Overexpression of PA28gamma enhanced the proteolysis of the HCV core protein. Thus, the nuclear retention and stability of the HCV core protein is regulated via a PA28gamma-dependent pathway through which HCV pathogenesis may be exerted.  相似文献   
130.
The serine carboxypeptidase inhibitor in the cytoplasm of Saccharomyces cerevisiae, IC, specifically inhibits vacuolar carboxypeptidase Y (CPY) and belongs to a functionally unknown family of phosphatidylethanolamine-binding proteins (PEBPs). In the presence of 1 M guanidine hydrochloride, a CPY-IC complex is formed and is almost fully activated. The reactivities of phenylmethylsulfonyl fluoride, p-chloromercuribenzoic acid, and diisopropyl fluorophosphate toward the complex are considerably increased in 1 M guanidine hydrochloride, indicating that IC contains a binding site other than its inhibitory reactive site. IC is able to form the complex with diisopropyl fluorophosphate-modified CPY. Tryptic digestion of the complex indicates that two fragments from IC are involved in complex formation with CPY. These findings demonstrate the multiple site binding of IC with CPY. Considering the fact that mouse PEBP has recently been identified as a novel thrombin inhibitor, the binding that characterizes the CPY-IC complex could be a common feature of PEBPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号