首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2368篇
  免费   130篇
  2022年   12篇
  2021年   27篇
  2020年   13篇
  2019年   28篇
  2018年   22篇
  2017年   24篇
  2016年   39篇
  2015年   82篇
  2014年   77篇
  2013年   171篇
  2012年   135篇
  2011年   120篇
  2010年   87篇
  2009年   87篇
  2008年   147篇
  2007年   142篇
  2006年   116篇
  2005年   125篇
  2004年   137篇
  2003年   131篇
  2002年   104篇
  2001年   68篇
  2000年   62篇
  1999年   46篇
  1998年   19篇
  1997年   23篇
  1996年   18篇
  1995年   22篇
  1994年   21篇
  1993年   23篇
  1992年   41篇
  1991年   40篇
  1990年   29篇
  1989年   32篇
  1988年   21篇
  1987年   18篇
  1986年   16篇
  1985年   19篇
  1984年   21篇
  1983年   10篇
  1982年   15篇
  1981年   11篇
  1980年   7篇
  1979年   6篇
  1978年   13篇
  1977年   16篇
  1975年   7篇
  1974年   13篇
  1973年   7篇
  1972年   5篇
排序方式: 共有2498条查询结果,搜索用时 15 毫秒
111.
Non-small cell lung cancer (NSCLC) is an aggressive lung cancer accounting for approximately 85% of all lung cancer patients. For the patients with Stages IIIA, IIIB, and IIIC, the 5-year survival is low though with the combination with radiotherapy and chemotherapy. In addition, the occurrence of tumor cells (repopulated tumors) that survive irradiation remains a challenge. In our previous report, we subcloned the radiation-surviving tumor cells (IR cells) using the human NSCLC cell line, H1299, and found that the expression of neuropilin-1 (NRP-1) was upregulated in IR cells by the microarray analysis. Here, we investigated the contribution of neuropilin-1 to changes in the characteristics of IR cells. Although there were no differences in angiogenic activity in the tube formation assay between parental and IR cells, the cell motility was increased in IR cells compared to parental cells in the cell migration assay. This enhanced cell motility was suppressed by pretreatment with anti-NRP-1 antibody. Although further studies are necessary to identify other molecules associated with NRP-1, the increase in cellular motility in IR cells might be due to the contribution of NRP-1. Inhibition of NRP-1 would help control tumor malignancy in radiation-surviving NSCLC.  相似文献   
112.
The point of maximum activity is specific to a particular substrate-enzyme system but may vary with different substrates and the same enzyme. The specificity of enzymes has, however, been generally reported only at their "optimal" pH. In this article, we introduce the Michaelis-Menten equation taking pH into account, and apply it to the pH-activity profile of the thermolysin-catalyzed dipeptide synthesis. It has been reported to date that the pH-activity profile of thermolysin follows a bell-shaped curve with a maximal activity at or near pH 7.0. The profiles obtained in this study, however, indicated that the optimal pH varied from 5.8 (for F-AspPheOMe) to 7.3 (for Z-ArgPheOMe), and the order of thermolysin activity was greatly dependent on the pH of reaction media. We have succeeded in evaluating the substrates-induced change of the dissociation states of the active site of thermolysin using the hydrophobicity of substrates. We have obtained apparent kinetic parameters which are independent of the pH of reaction media. The apparent specificity of thermolysin which were independent of pH of the reaction media was in order L-Leu > L-Asp > L-Arg > L-Ala > L-Gly > L-Val and Z > Boc = F at P1 and P2 positions, respectively.  相似文献   
113.
Smad7 is an inhibitory Smad that acts as a negative regulator of signaling by the transforming growth factor-beta (TGF-beta) superfamily proteins. Smad7 is induced by TGF-beta, stably interacts with activated TGF-beta type I receptor (TbetaR-I), and interferes with the phosphorylation of receptor-regulated Smads. Here we show that Smurf1, an E3 ubiquitin ligase for bone morphogenetic protein-specific Smads, also interacts with Smad7 and induces Smad7 ubiquitination and translocation into the cytoplasm. In addition, Smurf1 associates with TbetaR-I via Smad7, with subsequent enhancement of turnover of TbetaR-I and Smad7. These results thus reveal a novel function of Smad7, i.e. induction of degradation of TbetaR-I through recruitment of an E3 ligase to the receptor.  相似文献   
114.
115.
116.
Endonuclease-induced DNA fragmentation is a hallmark of apoptosis. DNase gamma (DNase ) was recently identified as one of the endonucleases responsible for apoptotic DNA fragmentation. In this study, immunohistochemistry for DNase was performed on paraffin sections of rodent liver in well-defined models of hepatocyte apoptosis induced by Fas antibody (Fas) or cycloheximide (CHX), and necrosis induced by lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). DNase immunoreactivity was compared with TdT-mediated dUTP nick-end labeling (TUNEL) reactivity. Our results showed TUNEL reactivity in both apoptotic and necrotic hepatocytes. DNase immunoreactivity was not detected during LPS-induced or CCl4-induced hepatocyte necrosis. In contrast, it was evident during CHX-induced, but not Fas-induced, apoptotic DNA fragmentation. These findings suggest that DNase plays an important role in Fas-independent apoptotic DNA fragmentation in hepatocytes.  相似文献   
117.
During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus (Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic, bulbar and Mauthner cells, develop in conserved rhombomere-specific positions, similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore, whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.  相似文献   
118.
Li Z  Okamoto K  Hayashi Y  Sheng M 《Cell》2004,119(6):873-887
The proper intracellular distribution of mitochondria is assumed to be critical for normal physiology of neuronal cells, but direct evidence for this idea is lacking. Extension or movement of mitochondria into dendritic protrusions correlates with the development and morphological plasticity of spines. Molecular manipulations of dynamin-like GTPases Drp1 and OPA1 that reduce dendritic mitochondria content lead to loss of synapses and dendritic spines, whereas increasing dendritic mitochondrial content or mitochondrial activity enhances the number and plasticity of spines and synapses. Thus, the dendritic distribution of mitochondria is essential and limiting for the support of synapses. Reciprocally, synaptic activity modulates the motility and fusion/fission balance of mitochondria and controls mitochondrial distribution in dendrites.  相似文献   
119.
Several studies have addressed the importance of various ubiquitin-like (UBL) post-translational modifiers. These UBLs are covalently linked to most, if not all, target protein(s) through an enzymatic cascade analogous to ubiquitylation, consisting of E1 (activating), E2 (conjugating), and E3 (ligating) enzymes. In this report, we describe the identification of a novel ubiquitin-fold modifier 1 (Ufm1) with a molecular mass of 9.1 kDa, displaying apparently similar tertiary structure, although lacking obvious sequence identity, to ubiquitin. Ufm1 is first cleaved at the C-terminus to expose its conserved Gly residue. This Gly residue is essential for its subsequent conjugating reactions. The C-terminally processed Ufm1 is activated by a novel E1-like enzyme, Uba5, by forming a high-energy thioester bond. Activated Ufm1 is then transferred to its cognate E2-like enzyme, Ufc1, in a similar thioester linkage. Ufm1 forms several complexes in HEK293 cells and mouse tissues, revealing that it conjugates to the target proteins. Ufm1, Uba5, and Ufc1 are all conserved in metazoa and plants but not in yeast, suggesting its potential roles in various multicellular organisms.  相似文献   
120.
Plastid protein import 2 (ppi2), a mutant of Arabidopsis thaliana, lacks a homologue of a component of the translocon at the outer envelope membrane of chloroplasts (Toc), designated Toc159 of the pea. Toc159 is thought to be essential for the import of photosynthetic proteins into chloroplasts. In order to investigate the effect of protein import on the plant development, we examined the morphologies of the developing leaves and the shoot apical meristems (SAM) in the ppi2 plants. Our histological analysis revealed that the development of leaves is severely affected in ppi2, while the structure of SAM is normal. Abnormalities in leaves became obvious in the later stages of leaf development, resulting in the generation of mature leaves with fewer mesophyll cells and more intercellular spaces as compared with the wild type. Palisade and spongy tissues of the mature leaves were indistinguishable in ppi2. Replication of chloroplast DNA was also suggested to be impaired in ppi2. Our results suggest that protein import into chloroplasts is important for the normal development of leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号