首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6741篇
  免费   482篇
  2023年   31篇
  2022年   68篇
  2021年   151篇
  2020年   70篇
  2019年   114篇
  2018年   139篇
  2017年   128篇
  2016年   201篇
  2015年   305篇
  2014年   316篇
  2013年   419篇
  2012年   540篇
  2011年   478篇
  2010年   272篇
  2009年   255篇
  2008年   361篇
  2007年   392篇
  2006年   343篇
  2005年   291篇
  2004年   243篇
  2003年   237篇
  2002年   236篇
  2001年   128篇
  2000年   133篇
  1999年   113篇
  1998年   60篇
  1997年   58篇
  1996年   46篇
  1995年   50篇
  1994年   38篇
  1993年   42篇
  1992年   97篇
  1991年   76篇
  1990年   75篇
  1989年   65篇
  1988年   50篇
  1987年   54篇
  1986年   46篇
  1985年   44篇
  1984年   44篇
  1983年   49篇
  1982年   21篇
  1981年   21篇
  1979年   36篇
  1978年   21篇
  1975年   26篇
  1974年   22篇
  1973年   19篇
  1970年   21篇
  1967年   21篇
排序方式: 共有7223条查询结果,搜索用时 31 毫秒
921.
Macroautophagy (commonly referred to as autophagy) is the process by which intact organelles and/or large portions of the cytoplasm are engulfed within double-membraned autophagic vacuoles for degradation. Whereas basal levels of autophagy ensure the physiological turnover of old and damaged organelles, the massive accumulation of autophagic vacuoles may represent either an alternative pathway of cell death or an ultimate attempt for cells to survive by adapting to stress. The activation of the autophagic pathway beyond a certain threshold may promote cell death directly, by causing the collapse of cellular functions as a result of cellular atrophy (autophagic, or type II, cell death). Alternatively, autophagy can lead to the execution of apoptotic (type I) or necrotic (type III) cell death programs, presumably via common regulators such as proteins from the Bcl-2 family. On the other hand, limited self-eating can provide cells with metabolic substrates to meet their energetic demands under stressful conditions, such as nutrient deprivation, or favor the selective elimination of damaged (and potentially dangerous) organelles. In these instances, autophagy operates as a pro-survival mechanism. The coordinate regulation of these opposite effects of autophagy relies upon a complex network of signal transducers, most of which also participate in non-autophagic signaling cascades. Thus, autophagy occupies a crucial position within the cell's metabolism, and its modulation may represent an alternative therapeutic strategy in several pathological settings including cancer and neurodegeneration. Here, we present a general outline of autophagy followed by a detailed analysis of organelle-specific autophagic pathways and of their intimate connections with cell death.  相似文献   
922.

Background

Various prognostic serum and cellular markers have been identified for many diseases, such as cardiovascular diseases and tumor pathologies. Here we assessed whether the levels of certain stem cells may predict the progression of Duchenne muscular dystrophy (DMD).

Methods and Findings

The levels of several subpopulations of circulating stem cells expressing the CD133 antigen were determined by flow cytometry in 70 DMD patients. The correlation between the levels and clinical status was assessed by statistical analysis. The median (±SD) age of the population was 10.66±3.81 (range 3 to 20 years). The levels of CD133+CXCR4+CD34- stem cells were significantly higher in DMD patients compared to healthy controls (mean±standard deviation: 17.38±1.38 vs. 11.0±1.70; P = 0.03) with a tendency towards decreased levels in older patients. Moreover, the levels of this subpopulation of cells correlated with the clinical condition. In a subgroup of 19 DMD patients after 24 months of follow-up, increased levels of CD133+CXCR4+CD34- cells was shown to be associated with a phenotype characterised by slower disease progression. The circulating CD133+CXCR4+CD34- cells in patients from different ages did not exhibit significant differences in their myogenic and endothelial in vitro differentiation capacity.

Conclusions

Our results suggest that levels of CD133+CXCR4+CD34- could function as a new prognostic clinical marker for the progression of DMD.  相似文献   
923.
Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane permeabilization and the ensuing release of apoptogenic proteins, and that these events are inhibited by growth factor signalling. Here we show that a hexokinase II N-terminal peptide selectively detaches hexokinase II from mitochondria and activates apoptosis. These events are abrogated by inhibiting two established permeability transition pore modulators, the adenine nucleotide translocator or cyclophilin D, or in cyclophilin D knock-out cells. Conversely, insulin stimulation or genetic ablation of the voltage-dependent anion channel do not affect cell death induction by the hexokinase II peptide. Therefore, hexokinase II detachment from mitochondria transduces a permeability transition pore opening signal that results in cell death and does not require the voltage-dependent anion channel. These findings have profound implications for our understanding of the pathways of outer mitochondrial membrane permeabilization and their inactivation in tumors.  相似文献   
924.
Progesterone plays a role in breast cancer development and progression but the effects on breast cancer cell movement or invasion have not been fully explored. In this study, we investigate the actions of natural progesterone and of the synthetic progestin medroxyprogesterone acetate (MPA) on actin cytoskeleton remodeling and on breast cancer cell movement and invasion. In particular, we characterize the nongenomic signaling cascades implicated in these actions. T47-D breast cancer cells display enhanced horizontal migration and invasion of three-dimensional matrices in the presence of both progestins. Exposure to the hormones triggers a rapid remodeling of the actin cytoskeleton and the formation of membrane ruffles required for cell movement, which are dependent on the rapid phosphorylation of the actin-regulatory protein moesin. The extra-cellular small GTPase RhoA/Rho-associated kinase (ROCK-2) cascade plays central role in progesterone- and MPA-induced moesin activation, cell migration and invasion. In the presence of progesterone, progesterone receptor A (PRA) interacts with the G protein G alpha(13), while MPA drives PR to interact with tyrosine kinase c-Src and to activate phosphatidylinositol-3 kinase, leading to the activation of RhoA/ROCK-2. In conclusion, our findings manifest that progesterone and MPA promote breast cancer cell movement via rapid actin cytoskeleton remodeling, which are mediated by moesin activation. These events are triggered by RhoA/ROCK-2 cascade through partially differing pathways by the two compounds. These results provide original mechanistic explanations for the effects of progestins on breast cancer progression and highlight potential targets to treat endocrine-sensitive breast cancers.  相似文献   
925.
A subset of primary sensory neurons produces BDNF, which is implicated in control of nociceptive neurotransmission. We previously localized full-length trkB receptors on their terminals within lamina II. To functionally study these receptors, we here employed patch-clamp recordings, calcium imaging and immunocytochemistry on slices from 8-12 days post-natal rats. In this preparation, BDNF (100-500 ng/mL) enhances the release of sensory neurotransmitters (glutamate, substance P, CGRP) in lamina II by acting on trkB receptors expressed by primary afferent fibers of the peptidergic nociceptive type (PN-PAFs). Effect was blocked by trk antagonist K252a or anti-trkB antibody clone 47. A pre-synaptic mechanism was demonstrated after (i) patch-clamp recordings where the neurotrophin induced a significant increase in frequency, but not amplitude, of AMPA-mediated mEPSCs, (ii) real time calcium imaging, where sustained application of BDNF evoked an intense response in up to 57% lamina II neurons with a significant frequency rise. Antagonists of ionotropic glutamate receptors and NK(1) receptors completely inhibited the calcium response to BDNF. Reduction of CGRP (a specific marker of PN-PAFs) and substance P content in dorsal horn following BDNF preincubation, and analysis of the calcium response after depletion with capsaicin, confirmed that the neurotrophin presynaptically enhanced neurotransmitter release from PN-PAFs. This is the first demonstration that trkB receptors expressed by PN-PAF terminals in lamina II are functional during postnatal development. Implications of this finding are discussed considering that BDNF can be released by these same terminals and microglia, a fraction of which (as shown here) contains BDNF also in unactivated state.  相似文献   
926.
Eukaryotic Okazaki fragment maturation requires complete removal of the initiating RNA primer before ligation occurs. Polymerase delta (Pol delta) extends the upstream Okazaki fragment and displaces the 5'-end of the downstream primer into a single nucleotide flap, which is removed by FEN1 nuclease cleavage. This process is repeated until all RNA is removed. However, a small fraction of flaps escapes cleavage and grows long enough to be coated with RPA and requires the consecutive action of the Dna2 and FEN1 nucleases for processing. Here we tested whether RPA inhibits FEN1 cleavage of long flaps as proposed. Surprisingly, we determined that RPA binding to long flaps made dynamically by polymerase delta only slightly inhibited FEN1 cleavage, apparently obviating the need for Dna2. Therefore, we asked whether other relevant proteins promote long flap cleavage via the Dna2 pathway. The Pif1 helicase, implicated in Okazaki maturation from genetic studies, improved flap displacement and increased RPA inhibition of long flap cleavage by FEN1. These results suggest that Pif1 accelerates long flap growth, allowing RPA to bind before FEN1 can act, thereby inhibiting FEN1 cleavage. Therefore, Pif1 directs long flaps toward the two-nuclease pathway, requiring Dna2 cleavage for primer removal.  相似文献   
927.
To determine the roles of cholesterol and the actin cytoskeleton in apical and basolateral protein organization and sorting, we have performed comprehensive confocal fluorescence recovery after photobleaching analyses of apical and basolateral and raft- and non-raft-associated proteins, both at the plasma membrane and in the Golgi apparatus of polarized MDCK cells. We show that at both the apical and basolateral plasma membrane domains, raft-associated proteins diffuse faster than non-raft-associated proteins and that, different from the latter, they become restricted upon depletion of cholesterol. Furthermore, only transmembrane apical proteins are restricted by the actin network. This indicates that cholesterol-dependent domains exist both at the apical and basolateral membranes of polarized cells and that the actin cytoskeleton has a predominant role in the organization of transmembrane proteins independent of their association with rafts at the apical membrane. In the Golgi apparatus apical proteins appear to be segregated from the basolateral ones in a compartment that is sensitive both to cholesterol depletion and actin rearrangements. Furthermore, consistent with the role of actin rearrangements in apical protein sorting, we found that apical proteins exhibit a differential sensitivity to actin depolymerization in the Golgi of polarized and nonpolarized cells.  相似文献   
928.
929.
The direct ghrelin (Ghr) involvement in cardiovascular (CV) system homeostasis has been suggested by the expression of its receptor in CV tissues and by evidence that ghrelin mediates CV activities in animals and in humans. Moreover, low Ghr plasma levels have been reported in pathological conditions characterized by high cardiovascular risk. In the present study, we investigated Ghr effect on proliferation of human aortic endothelial cell (HAEC) and involved transduction pathways. Our results indicate that ghrelin elicited proliferation in a dose-dependent manner (EC(50) about of 5nmol/L) in cultured HAEC, and that this effect was inhibited by the receptor antagonist (D-Lys3)-GHRP-6. Western blot experiments documented an activation of external receptor activated kinases (ERK1/2) and Akt in a dose-dependent fashion, as well as involvement of the cAMP pathway in ERK1/2 phosphorylation. Experiments conducted with appropriate pharmacological inhibitors to investigate Ghr-induced HAEC proliferation confirmed the involvement of ERK1/2 and I3P/Akt pathways, as well as the role of AMP cyclase/PKA pathway in ERK1/2 phosphorylation. Our results indicate that Ghr promotes HAEC proliferation, and thus may be a protective factor against vascular damage. The low ghrelin serum levels reported in insulin-resistant states may not be able to effectively counteract endothelial cell injury.  相似文献   
930.
Gold(III) compounds constitute an emerging class of biologically active substances, of special interest as potential anticancer agents. During the past decade a number of structurally diverse gold(III) complexes were reported to be acceptably stable under physiological-like conditions and to manifest very promising cytotoxic effects against selected human tumour cell lines, making them good candidates as anti-tumour drugs. Some representative examples will be described in detail. There is considerable interest in understanding the precise biochemical mechanisms of these novel cytotoxic agents. Based on experimental evidence collected so far we hypothesize that these metallodrugs, at variance with classical platinum(II) drugs, produce in most cases their growth inhibition effects through a variety of "DNA-independent" mechanisms. Notably, strong inhibition of the selenoenzyme thioredoxin reductase and associated disregulation of mitochondrial functions were clearly documented in some selected cases, thus providing a solid biochemical basis for the pronounced proapoptotic effects. These observations led us to investigate in detail the reactions of gold(III) compounds with a few model proteins in order to gain molecular-level information on the possible interaction modes with possible protein targets. Valuable insight on the formation and the nature of gold-protein adducts was gained through ESI MS (electrospray ionization mass spectrometry) and spectrophotometric studies of appropriate model systems as it is exemplified here by the reactions of two representative gold(III) compounds with cytochrome c and ubiquitin. The mechanistic relevance of gold(III)-induced oxidative protein damage and of direct gold coordination to protein sidechains is specifically assessed. Perspectives for the future of this topics are briefly outlined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号