首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3237篇
  免费   199篇
  3436篇
  2023年   26篇
  2022年   63篇
  2021年   97篇
  2020年   44篇
  2019年   76篇
  2018年   92篇
  2017年   76篇
  2016年   119篇
  2015年   200篇
  2014年   194篇
  2013年   211篇
  2012年   337篇
  2011年   268篇
  2010年   167篇
  2009年   158篇
  2008年   202篇
  2007年   209篇
  2006年   168篇
  2005年   140篇
  2004年   106篇
  2003年   92篇
  2002年   103篇
  2001年   13篇
  2000年   10篇
  1999年   19篇
  1998年   10篇
  1997年   10篇
  1996年   5篇
  1995年   13篇
  1993年   11篇
  1992年   13篇
  1991年   11篇
  1990年   12篇
  1989年   7篇
  1988年   9篇
  1987年   6篇
  1986年   10篇
  1985年   10篇
  1984年   8篇
  1982年   12篇
  1981年   8篇
  1979年   7篇
  1978年   8篇
  1974年   6篇
  1972年   6篇
  1971年   5篇
  1970年   6篇
  1969年   5篇
  1968年   8篇
  1966年   8篇
排序方式: 共有3436条查询结果,搜索用时 15 毫秒
41.
42.
43.
44.
45.
Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.Bacterial lipoproteins (Lpps)1 are a subset of membrane proteins that are covalently modified with a lipidic moiety at their N-terminal cysteine residue. It is commonly reported that Lpps of Gram-positive bacteria are processed by two key enzymes; the prolipoprotein diacylglyceryl transferase (Lgt) and the lipoprotein signal peptidase (Lsp). The Lgt enzyme recognizes a so-called lipobox motif in the C-terminal region of the signal peptide of a premature lipoprotein and transfers a diacylglyceryl moiety to the cysteine residue of the lipobox (1), (2). Subsequently, the Lsp enzyme cleaves the signal peptide resulting in a mature Lpp (3), (4). Nevertheless, recent reports have suggested that N-acylation occurs in bacteria that lack the Gram-negative homologous apolipoprotein N-acyltransferase (Lnt) gene responsible for this modification (5, 6), and that Lpp N-terminal could also be modified with an acetyl group in some Gram-positive (7).Lpps have been described as virulence factors because they play critical roles in membrane stabilization, nutrient uptake, antibiotic resistance, bacterial adhesion to host cells, protein maturation and secretion and many of them still have unknown function (8). Several studies have suggested that bacterial Lpps are pathogen-associated molecular patterns (PAMPs) sensed by the mammalian host through Toll-like receptor 2 (TLR2) heterodimerized with TLR1 or TLR6 to induce innate immunity activation and to control adaptive immunity (912). TLR2 plays a critical role in the host response to the Gram-positive bacteria Staphylococcus aureus (13) and Streptococcus agalactiae (14). Although TLR2 has been considered a receptor for various structurally unrelated PAMPs, recent studies have suggested that, via their lipid moiety, bacterial Lpps function as the major, if not the sole, ligand molecules responsible for TLR2 activation (15). Although Gram-negative Lpps have been widely studied, little information is available for Gram-positive Lpps (16) and the ways they are released into the bacterial extracellular compartment and reach the host immune system remain unclear.We focused our attention on Lpps release by Streptococcus pyogenes. This Gram-positive bacterium is an important human pathogen that causes a wide range of diseases from superficial and self-limiting infection, e.g. pharyngitis and impetigo, to more systemic or invasive diseases like necrotizing fasciitis and septicemia (17). Understanding the role of bacterial Lpps in mediating innate and acquired immunity can be instrumental for the therapy and prophylaxis of human S. pyogenes infections. In this study, we showed that in S. pyogenes Lpps are released into the growth medium within vesicle-like structures in minute amounts. Conditions weakening the bacterial cell wall, such as the addition of sublethal concentrations of penicillin to the bacterial growth medium enhanced this phenomenon and allowed the recovery of sufficient material to enable an in-depth characterization. Proteomic analysis of the vesicles revealed that they were almost exclusively constituted of Lpps. A total of 28 Lpps were identified, representing more than 72% of the Lpps predicted from the genome of the strain under investigation. In addition, multiple transmembrane domain proteins were not found in abundance associated to the vesicles, indicating that vesicles were not representative of the bacterial membrane. We defined these vesicles as Lipoprotein-rich Membrane Vesicles (LMVs).Common characteristics are shared between the LMVs and the ExPortal described for the first time by Rosch and Caparon (18). This asymmetric and distinct membrane microdomain has been reported to be enriched in anionic phospholipids and acts in promoting the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and the accessory factors required for their maturation (1921). An association between ExPortal and peptidoglycan synthesis has also been reported (22). Similarly, LMVs are enriched in anionic phosphatidylglycerol, enzymes involved in protein maturation/secretion and cell wall biogenesis, suggesting that LMVs might derive from the ExPortal. Finally, we showed that LMVs do not induce TLR2 activation, indicating that the Lpps did not act as PAMPs when integrated into the LMVs.  相似文献   
46.
We investigated the ability of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) to interact with gemcitabine (GEM) in inducing pancreatic cancer cell death. The combined treatment with TSA and GEM synergistically inhibited growth of four pancreatic adenocarcinoma cell lines and induced apoptosis. This effect was associated with the induction of reactive oxygen species (ROS) by GEM, increased expression of the pro-apoptotic BIM gene by both TSA and GEM and downregulation of the 5'-nucleotidase UMPH type II gene by TSA. The expression of other genes critical for GEM resistance (nucleoside transporters, deoxycytidine kinase, cytidine deaminase, and ribonucleotide reductase genes) was not affected by TSA. The functional role of ROS in cell growth inhibition by GEM was supported by (i) a significantly reduced GEM-associated growth inhibition by the free radical scavenger N-acetyl-L-cysteine, and (ii) a positive correlation between the basal level of ROS and sensitivity to GEM in 10 pancreatic cancer cell lines. The functional role of both Bim and 5'-nucleotidase UMPH type II in cell growth inhibition by TSA and GEM was assessed by RNA interference assays. In vivo studies on xenografts of pancreatic adenocarcinoma cells in nude mice showed that the association of TSA and GEM reduced to 50% the tumour mass and did not cause any apparent form of toxicity, while treatments with TSA or GEM alone were ineffective. In conclusion, the present study demonstrates a potent anti-tumour activity of TSA/GEM combination against pancreatic cancer cells in vitro and in vivo, strongly supporting the use of GEM in combination with an HDAC inhibitor for pancreatic cancer therapy.  相似文献   
47.
Celiac disease is an immune-mediated disorder triggered by ingestion of wheat gliadin and related proteins in genetically susceptible individuals. In addition to the characteristic enteropathy, celiac disease is associated with various extraintestinal manifestations, including neurologic complications such as neuropathy, ataxia, seizures, and neurobehavioral changes. The cause of the neurologic manifestations is unknown, but autoimmunity resulting from molecular mimicry between gliadin and nervous system proteins has been proposed to play a role. In this study, we sought to investigate the immune reactivity of the anti-gliadin Ab response toward neural proteins. We characterized the binding of affinity-purified anti-gliadin Abs from immunized animals to brain proteins by one- and two-dimensional gel electrophoresis, immunoblotting, and peptide mass mapping. The major immunoreactive protein was identified as synapsin I. Anti-gliadin Abs from patients with celiac disease also bound to the protein. Such cross-reactivity may provide clues into the pathogenic mechanism of the neurologic deficits that are associated with gluten sensitivity.  相似文献   
48.
Some plant species are capable of significant reduction of xylem embolism during recovery from drought despite stem water potential remains negative. However, the functional biology underlying this process is elusive. We subjected poplar trees to drought stress followed by a period of recovery. Water potential, hydraulic conductivity, gas exchange, xylem sap pH, and carbohydrate content in sap and woody stems were monitored in combination with an analysis of carbohydrate metabolism, enzyme activity, and expression of genes involved in sugar metabolic and transport pathways. Drought resulted in an alteration of differential partitioning between starch and soluble sugars. Upon stress, an increase in the starch degradation rate and the overexpression of sugar symporter genes promoted the efflux of disaccharides (mostly maltose and sucrose) to the apoplast. In turn, the efflux activity of the sugar‐proton cotransporters caused a drop in xylem pH. The newly acidic environment induced the activity of apoplastic invertases leading to the accumulation of monosaccharides in the apoplast, thus providing the main osmoticum necessary for recovery. During drought and recovery, a complex network of coordinated molecular and biochemical signals was activated at the interface between xylem and parenchyma cells that appeared to prime the xylem for hydraulic recovery.  相似文献   
49.
In the present paper we investigated the role played by apoptosis during oogenesis in the cartilaginous fish Torpedo marmorata. TEM, TUNEL and immunohistochemical techniques were employed to specifically reveal morphological and biochemical hallmarks of apoptosis in specimens from birth to sexual maturity. Data obtained demonstrate that apoptosis occurs in prefollicular oocyte selection, in maintaining the homeostasis of granulosa in healthy growing oocyte and in resorbing atretic follicles. In this respect, the involvement of apoptosis in Torpedo marmorata oogenesis closely parallels that found in mammals, thus confirming that strategies of germ cell selection among vertebrates have been evolutionarily preserved.  相似文献   
50.
The fine needle aspiration (FNA) cytologic, immunocytochemical and ultrastructural findings of a primary multilobated T-cell lymphoma arising in the breast of a 61-year-old woman are described. Large pleomorphic multilobated malignant cells were primarily identified as lymphomatous in origin and phenotypically as T-cells by a selected panel of monoclonal antibodies applied to the original smears obtained by FNA biopsy. This appears to be the second report of a multilobated lymphoma arising in the breast and the first with a T-cell phenotype in this anatomic site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号