全文获取类型
收费全文 | 3089篇 |
免费 | 198篇 |
专业分类
3287篇 |
出版年
2024年 | 3篇 |
2023年 | 26篇 |
2022年 | 63篇 |
2021年 | 97篇 |
2020年 | 44篇 |
2019年 | 75篇 |
2018年 | 92篇 |
2017年 | 76篇 |
2016年 | 119篇 |
2015年 | 199篇 |
2014年 | 193篇 |
2013年 | 210篇 |
2012年 | 337篇 |
2011年 | 266篇 |
2010年 | 166篇 |
2009年 | 157篇 |
2008年 | 199篇 |
2007年 | 205篇 |
2006年 | 163篇 |
2005年 | 140篇 |
2004年 | 106篇 |
2003年 | 91篇 |
2002年 | 103篇 |
2001年 | 12篇 |
2000年 | 7篇 |
1999年 | 18篇 |
1998年 | 10篇 |
1997年 | 9篇 |
1996年 | 5篇 |
1995年 | 13篇 |
1994年 | 3篇 |
1993年 | 11篇 |
1992年 | 11篇 |
1991年 | 7篇 |
1990年 | 8篇 |
1989年 | 4篇 |
1988年 | 5篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1981年 | 3篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1972年 | 3篇 |
1967年 | 1篇 |
排序方式: 共有3287条查询结果,搜索用时 0 毫秒
11.
Chiara V. Segré Silvia Senese Sara Loponte Stefano Santaguida Paolo Soffientini Gabriela Grigorean 《MABS-AUSTIN》2016,8(1):37-42
Histone deacetylases (HDACs) are modification enzymes that regulate a plethora of biological processes. HDAC1, a crucial epigenetic modifier, is deregulated in cancer and subjected to a variety of post-translational modifications. Here, we describe the generation of a new monoclonal antibody that specifically recognizes a novel highly dynamic prophase phosphorylation of serine 406-HDAC1, providing a powerful tool for detecting early mitotic cells. 相似文献
12.
13.
14.
Ulivi V Giannoni P Gentili C Cancedda R Descalzi F 《Journal of cellular biochemistry》2008,104(4):1393-1406
Studying cartilage differentiation, we observed the emergence of inflammation-related proteins suggesting that a common pathway was activated in cartilage differentiation and inflammation. In the present paper, we investigated the expression pathway of the inflammation-related enzyme Cyclooxygenase-2 (COX-2) during differentiation and inflammatory response of the chondrocytic cell line MC615. Cells were cultured either as (i) proliferating prechondrogenic cells expressing type I collagen or (ii) differentiated hyperconfluent cells expressing Sox9 and type II collagen. The p38 and the NF-kB pathways were investigated in standard conditions and after inflammatory agents treatment. NF-kB was constitutively activated in differentiated cells. The activation level of NF-kB in differentiated cells was comparable to the level in proliferating cells treated with the inflammatory agent LPS. In both cases, p65 was bound to the NF-kB consensus sequence of COX-2 promoter. p38, constitutively activated in differentiated cells, was activated in proliferating cells by treatment with LPS or IL-1alpha. In stimulated proliferating cells the two pathways are connected since addition of the p38-specific inhibitor SB203580 inhibited p38 activation, significantly reduced NF-kB activation and repressed COX-2 synthesis indicating that p38 is upstream NF-kB activation and COX-2 synthesis. In differentiated cells, the treatment with the inflammatory agent neither enhance NF-kB activation, nor synthesis of COX-2 while the addition of SB203580 neither repressed activation of p38, nor COX-2 synthesis, suggesting a constitutive activation of a p38/NF-kB/COX2 pathway. Our data indicate that in chondrocytes, COX-2 is expressed via p38 activation/NF-kB recruitment during both differentiation and inflammatory response. 相似文献
15.
Ekaterini Blaveri Fiona Kelly Alessandra Mallei Kriss Harris Adam Taylor Juliet Reid Maria Razzoli Lucia Carboni Chiara Piubelli Laura Musazzi Girogio Racagni Aleksander Mathé Maurizio Popoli Enrico Domenici Stewart Bates 《PloS one》2010,5(9)
Background
The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.Principal Findings
In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.Conclusions
These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research. 相似文献16.
Fabio Moda Chiara Vimercati Ilaria Campagnani Margherita Ruggerone Giorgio Giaccone Michela Morbin Lorena Zentilin Mauro Giacca Ileana Zucca Giuseppe Legname Fabrizio Tagliavini 《朊病毒》2012,6(4):383-390
Prion diseases are caused by a conformational modification of the cellular prion protein (PrPC) into disease-specific forms, termed PrPSc, that have the ability to interact with PrPC promoting its conversion to PrPSc. In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrPC region involved in the interaction with PrPSc thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrPSc in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding. 相似文献
17.
Biogenesis and recycling of synaptic vesicles are accompanied by sorting processes that preserve the molecular composition of the compartments involved. In the present study, we have addressed the targeting of synaptobrevin 2/VAMP2 (vesicle-associated membrane protein 2), a critical component of the synaptic vesicle--fusion machinery, in a heterotypic context where its sorting is not confounded by the presence of other neuron-specific molecules. Ectopically expressed synaptophysin I interacts with VAMP2 and alters its default surface targeting to a prominent vesicular distribution, with no effect on the targeting of other membrane proteins. Protein-protein interaction is not sufficient for the control of VAMP2 sorting, which is mediated by the C-terminal domain of synaptophysin I. Synaptophysin I directs the sorting of VAMP2 to vesicles before surface delivery, without influencing VAMP2 endocytosis. Consistent with this, dynamin and alpha-SNAP (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein) mutants which block trafficking at the plasma membrane do not abrogate the effect of synaptophysin I on VAMP2 sorting. These results indicate that the sorting determinants of synaptic vesicle proteins can operate independently of a neuronal context and implicate the association of VAMP2 with synaptophysin I in the specification of the pathway of synaptic vesicle biogenesis. 相似文献
18.
Quantifying patterns of fine root dynamics is crucial to the understanding of ecosystem structure and function, and in predicting
how ecosystems respond to disturbance. Part of this understanding involves consideration of the carbon lost through root turnover.
In the context of the rainfall pattern in the tropics, it was hypothesised that rainfall would strongly influence fine root
biomass and longevity. A field study was conducted to determine root biomass, elemental composition and the influence of rainfall
on longevity of fine roots in a tropical lowland evergreen rainforest at Danum Valley, Sabah, Malaysia. A combination of root
coring, elemental analysis and rhizotron observation methods were used. Fine (less than 2 mm diameter) root biomass was relatively
low (1700 kg ha −1) compared with previously described rainforest data. Standing root biomass was positively correlated with
preceding rainfall, and the low fine root biomass in the dry season contained higher concentrations of N and lower concentrations
of P and K than at other times. Observations on rhizotrons demonstrated that the decrease in fine root biomass in the dry
season was a product of both a decrease in fine root length appearance and an increase in fine root length disappearance.
Fitting an overall model to root survival time showed significant effects of rainfall preceding root disappearance, with the
hazard of root disappearance decreasing by 8 for each 1 mm increase in the average daily (30 day) rainfall preceding root
disappearance. While it is acknowledged that other factors have a part to play, this work demonstrates the importance of rainfall
and soil moisture in influencing root biomass and root disappearance in this tropical rainforest. 相似文献
19.
HOTAIR role in melanoma progression and its identification in the blood of patients with advanced disease 下载免费PDF全文
20.
Selwyn S. Jayakar Xiaojuan Zhou David C. Chiara Zuzana Dostalova Pavel Y. Savechenkov Karol S. Bruzik William P. Dailey Keith W. Miller Roderic G. Eckenhoff Jonathan B. Cohen 《The Journal of biological chemistry》2014,289(40):27456-27468
Propofol acts as a positive allosteric modulator of γ-aminobutyric acid type A receptors (GABAARs), an interaction necessary for its anesthetic potency in vivo as a general anesthetic. Identifying the location of propofol-binding sites is necessary to understand its mechanism of GABAAR modulation. [3H]2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (azietomidate) and R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), photoreactive analogs of 2-ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (etomidate) and mephobarbital, respectively, have identified two homologous but pharmacologically distinct classes of intersubunit-binding sites for general anesthetics in the GABAAR transmembrane domain. Here, we use a photoreactive analog of propofol (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol ([3H]AziPm)) to identify propofol-binding sites in heterologously expressed human α1β3 GABAARs. Propofol, AziPm, etomidate, and R-mTFD-MPAB each inhibited [3H]AziPm photoincorporation into GABAAR subunits maximally by ∼50%. When the amino acids photolabeled by [3H]AziPm were identified by protein microsequencing, we found propofol-inhibitable photolabeling of amino acids in the β3-α1 subunit interface (β3Met-286 in β3M3 and α1Met-236 in α1M1), previously photolabeled by [3H]azietomidate, and α1Ile-239, located one helical turn below α1Met-236. There was also propofol-inhibitable [3H]AziPm photolabeling of β3Met-227 in βM1, the amino acid in the α1-β3 subunit interface photolabeled by R-[3H]mTFD-MPAB. The propofol-inhibitable [3H]AziPm photolabeling in the GABAAR β3 subunit in conjunction with the concentration dependence of inhibition of that photolabeling by etomidate or R-mTFD-MPAB also establish that each anesthetic binds to the homologous site at the β3-β3 subunit interface. These results establish that AziPm as well as propofol bind to the homologous intersubunit sites in the GABAAR transmembrane domain that binds etomidate or R-mTFD-MPAB with high affinity. 相似文献