首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3073篇
  免费   199篇
  2024年   2篇
  2023年   19篇
  2022年   56篇
  2021年   97篇
  2020年   44篇
  2019年   75篇
  2018年   92篇
  2017年   76篇
  2016年   119篇
  2015年   199篇
  2014年   193篇
  2013年   210篇
  2012年   337篇
  2011年   266篇
  2010年   166篇
  2009年   157篇
  2008年   199篇
  2007年   205篇
  2006年   163篇
  2005年   140篇
  2004年   106篇
  2003年   91篇
  2002年   103篇
  2001年   12篇
  2000年   7篇
  1999年   18篇
  1998年   10篇
  1997年   9篇
  1996年   5篇
  1995年   13篇
  1994年   3篇
  1993年   11篇
  1992年   11篇
  1991年   7篇
  1990年   8篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   3篇
  1967年   1篇
排序方式: 共有3272条查询结果,搜索用时 703 毫秒
921.
The microsomal enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase and the low density lipoprotein (LDL) receptor pathway carry out a key role on cholesterol homeostasis in eucaryotic cells. The HMG-CoA reductase is sensitive to oxidative inactivation and to phosphorylation by many kinases that are able to inactivate the protein and increase its susceptibility to proteolysis. We previously demonstrated that a calf thymus Cu,Zn SOD affects cholesterol metabolism. This protein binds with rat hepatocyte cell membrane by a specific surface membrane receptor. The involvement of Cu,Zn SOD in cholesterol metabolism is confirmed further by the presence of this antioxidant enzyme in circulating serum lipoproteins. We studied the effect of native human Cu,Zn SOD, metal-free SOD (apo SOD), and SOD-inactivated with hydrogen peroxide on cholesterol metabolism in human hepatocarcinoma HepG2 cells. Results showed that all forms of SODs used, at the concentration of 150 ng/ml, are able to affect cholesterol metabolism decreasing both HMG-CoA reductase activity and its protein levels; this inhibitory effect is accompanied by reduced cholesterol synthesis measured as [14C]acetate incorporation into [14C]cholesterol and by an increased [125I]LDL binding to HepG2 cells. Furthermore, the inhibitory effect of Cu,Zn SOD on cholesterol synthesis was completely abolished when the cells were incubated with Cu,Zn SOD in the presence of bisindoilmaleimide (BDM), an inhibitor of protein kinase C (PKC); moreover, we demonstrated that Cu,Zn SOD as well as apo SOD was able to increase PKC activity. Overall, data demonstrate that Cu,Zn SOD affects cholesterol metabolism independently from its dismutase activity and its metal content and that the inhibitory action on cholesterol synthesis is mediated by an activation of protein kinase C.  相似文献   
922.
Truncated hemoglobins (trHb's) form a family of low molecular weight O2 binding hemoproteins distributed in eubacteria, protozoa, and plants. TrHb's branch in a distinct clade within the hemoglobin (Hb) superfamily. A unique globin gene has recently been identified from the complete genome sequence of Mycobacterium leprae that is predicted to encode a trHb (M. leprae trHbO). Sequence comparison and modelling considerations indicate that monomeric M. leprae trHbO has structural features typical of trHb's, such as 20-40 fewer residues than conventional globin chains, Gly-based sequence consensus motifs, likely assembling into a 2-on-2 alpha-helical sandwich fold, and hydrophobic residues recognized to build up the protein matrix ligand diffusion tunnel. The ferrous heme iron atom of deoxygenated M. leprae trHbO appears to be hexacoordinated, like in Arabidopsis thaliana trHbO-3 (A. thaliana trHbO-3). Accordingly, the value of the second-order rate constant for M. leprae trHbO carbonylation (7.3 x 10(3) M(-1) s(-1)) is similar to that observed for A. thaliana trHbO-3 (1.4 x 10(4) M(-1) s(-1)) and turns out to be lower than that reported for carbon monoxide binding to pentacoordinated Mycobacterium tuberculosis trHbN (6.7 x 10(6) M(-1) s(-1)). The lower reactivity of M. leprae trHbO as compared to M. tuberculosis trHbN might be related to the higher susceptibility of the leprosy bacillus to toxic nitrogen and oxygen species produced by phagocytic cells.  相似文献   
923.
Several mammalian 5'-nucleotidases (5-NTs), attached to membranes or present in the cytosol or in mitochondria, remove the phosphate from ribo- and deoxyribonucleotides with different specificities for the sugar and base moieties. Some enzymes probably participate in signaling functions by producing adenosine from AMP. A more general function may be to prevent overproduction of deoxyribonucleotides. 5-NTs may affect the pharmacological activity of nucleoside analogs and also be involved in their mitochondrial toxicity. Here we describe for five cloned 5-NT specific assays that largely rely on new inhibitors for some of the enzymes. The assays can be used to quantitate each enzyme in crude cell extracts. To ascertain their validity we applied each assay to extracts from genetically modified cells that overproduce separately each of the five enzymes. The methodology should be useful in further studies of the physiological function of 5-NTs and their influence on the clinical use of nucleoside analogs.  相似文献   
924.
The possibility that some combinations of mtDNA polymorphisms, previously associated with Leber's hereditary optic neuropathy (LHON), may affect mitochondrial respiratory function was tested in osteosarcoma-derived transmitochondrial cytoplasmic hybrids (cybrids). In this cellular system, in the presence of the same nuclear background, different exogenous mtDNAs are used to repopulate a parental cell line previously devoid of its original mtDNA. No detectable differences in multiple parameters exploring respiratory function were observed when mtDNAs belonging to European haplogroups X, H, T and J were used. Different possible explanations for the previously established association between haplogroup J and LHON 11778/ND4 and 14484/ND6 pathogenic mutations are discussed, including the unconventional proposal that mtDNA haplogroup J may exert a protective rather than detrimental effect.  相似文献   
925.
926.
Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins – termed phosphoproteomics – strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed.  相似文献   
927.
Genetic analysis of Soil-Borne Cereal Mosaic Virus (SBCMV) resistance in durum wheat was carried out using a population of 180 recombinant inbred lines (RILs) obtained from Simeto (susceptible) × Levante (resistant). The RILs were characterized for SBCMV response in the field under severe and uniform SBCMV infection in two growing seasons and genotyped with simple sequence repeat (SSR) and Diversity Arrays Technology? markers. Transgressive segregation was observed for disease reaction as estimated by symptom severity scores and virus concentration in leaves. Heritability of the disease response was high, with h 2 values consistently above 80%. A major quantitative trait locus (QTL) (QSbm.ubo-2BS) in the distal telomeric region of chromosome 2BS accounted for 60–70% of the phenotypic variation for symptom severity, 40–55% for virus concentration and 15–30% for grain yield. The favorable allele was contributed by Levante. Seven additional QTL influenced SBCMV resistance, with the low-susceptibility allele contributed by Levante at five QTL and by Simeto at the remaining two. The meta-QTL analysis carried out using the data from two mapping populations (Simeto × Levante and Meridiano × Claudio) suggests that in both populations SBCMV resistance is likely controlled by QSbm.ubo-2BS. Our results confine QSbm.ubo-2BS to a c. 2-cM-wide interval flanked by SSR markers that are already being used for marker-assisted selection.  相似文献   
928.
Chromosoma - Aurora-A is a conserved mitotic kinase overexpressed in many types of cancer. Growing evidence shows that Aurora-A plays a crucial role in DNA damage response (DDR) although this...  相似文献   
929.
Increasing risk of pollinosis (hay fever) is one of the most anticipated consequences of climate change on human health. Wind‐pollinated plants are representative of allergenic species because they include species with the highest capability of causing allergy‐related diseases in humans. Therefore, changes in wind‐pollinated species may reflect impacts of climate change on allergenic plants. In particular, flowering is one of the developmental stages most affected by climate change. This report specifically addresses changes in flowering dates that have occurred during the three decades 1971–2000 as a function of pollination mode and woodiness. The assessment is made using a phenological data set comprising trends of flowering dates of 29 species in 983 locations in Europe. Linear mixed models assessing the statistical significance of trends while adjusting for spatial correlation are used. The main results indicate for the first time that the onset of flowering of wind‐pollinated plants advanced more than for insect‐pollinated plants, while full flowering phases tended to advance less. These novel findings are contrary to the results of Fitter and Fitter (2002) for Oxfordshire, who reported larger advances of insect‐pollinated plants. Onset of flowering and full flowering of insect‐pollinated species are more likely to advance for seasons early in the year; instead, wind‐pollinated plants showed no dependence of trends on the season (first flowering) or a decreased advance of phases that are early in the year (full flowering). The effect of woodiness could not be unambiguously defined, but seems to be of minor importance. The presented findings suggest a lengthening of the flowering period in general, which might lead to an increasing time of exposure to airborne pollen of allergic subjects, with consequent likely increment in severity and incidence of allergic symptoms.  相似文献   
930.
The dNTP triphosphohydrolase SAMHD1 is a nuclear antiviral host restriction factor limiting HIV-1 infection in macrophages and a major regulator of dNTP concentrations in human cells. In normal human fibroblasts its expression increases during quiescence, contributing to the small dNTP pool sizes of these cells. Down-regulation of SAMHD1 by siRNA expands all four dNTP pools, with dGTP undergoing the largest relative increase. The deoxyguanosine released by SAMHD1 from dGTP can be phosphorylated inside mitochondria by deoxyguanosine kinase (dGK) or degraded in the cytosol by purine nucleoside phosphorylase. Genetic mutations of dGK cause mitochondrial (mt) DNA depletion in noncycling cells and hepato-cerebral mtDNA depletion syndrome in humans. We studied if SAMHD1 and dGK interact in the regulation of the dGTP pool during quiescence employing dGK-mutated skin fibroblasts derived from three unrelated patients. In the presence of SAMHD1 quiescent mutant fibroblasts manifested mt dNTP pool imbalance and mtDNA depletion. When SAMHD1 was silenced by siRNA transfection the composition of the mt dNTP pool approached that of the controls, and mtDNA copy number increased, compensating the depletion to various degrees in the different mutant fibroblasts. Chemical inhibition of purine nucleoside phosphorylase did not improve deoxyguanosine recycling by dGK in WT cells. We conclude that the activity of SAMHD1 contributes to the pathological phenotype of dGK deficiency. Our results prove the importance of SAMHD1 in the regulation of all dNTP pools and suggest that dGK inside mitochondria has the function of recycling the deoxyguanosine derived from endogenous dGTP degraded by SAMHD1 in the nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号