全文获取类型
收费全文 | 172篇 |
免费 | 9篇 |
国内免费 | 3篇 |
专业分类
184篇 |
出版年
2021年 | 2篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 8篇 |
2014年 | 7篇 |
2013年 | 10篇 |
2012年 | 9篇 |
2011年 | 7篇 |
2010年 | 17篇 |
2009年 | 14篇 |
2008年 | 11篇 |
2007年 | 12篇 |
2006年 | 6篇 |
2005年 | 6篇 |
2004年 | 7篇 |
2003年 | 6篇 |
2002年 | 2篇 |
2001年 | 7篇 |
1999年 | 4篇 |
1998年 | 6篇 |
1997年 | 4篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1988年 | 1篇 |
1983年 | 1篇 |
1980年 | 3篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1977年 | 3篇 |
1970年 | 1篇 |
1968年 | 2篇 |
排序方式: 共有184条查询结果,搜索用时 15 毫秒
21.
FLUXNET and modelling the global carbon cycle 总被引:3,自引:0,他引:3
ANDREW D. FRIEND ALMUT ARNETH† NANCY Y. KIANG‡ MARK LOMAS§ JÉRÔME OGÉE¶ CHRISTIAN RÖDENBECK STEVEN W. RUNNING JEAN-DIEGO SANTAREN STEPHEN SITCH†† NICOLAS VIOVY F. IAN WOODWARD§ SÖNKE ZAEHLE†† 《Global Change Biology》2007,13(3):610-633
Measurements of the net CO2 flux between terrestrial ecosystems and the atmosphere using the eddy covariance technique have the potential to underpin our interpretation of regional CO2 source–sink patterns, CO2 flux responses to forcings, and predictions of the future terrestrial C balance. Information contained in FLUXNET eddy covariance data has multiple uses for the development and application of global carbon models, including evaluation/validation, calibration, process parameterization, and data assimilation. This paper reviews examples of these uses, compares global estimates of the dynamics of the global carbon cycle, and suggests ways of improving the utility of such data for global carbon modelling. Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere models compares favourably with FLUXNET observations at diurnal and seasonal timescales. However, complete model validation, particularly over the full annual cycle, requires information on the balance between assimilation and decomposition processes, information not readily available for most FLUXNET sites. Site history, when known, can greatly help constrain the model‐data comparison. Flux measurements made over four vegetation types were used to calibrate the land‐surface scheme of the Goddard Institute for Space Studies global climate model, significantly improving simulated climate and demonstrating the utility of diurnal FLUXNET data for climate modelling. Land‐surface temperatures in many regions cool due to higher canopy conductances and latent heat fluxes, and the spatial distribution of CO2 uptake provides a significant additional constraint on the realism of simulated surface fluxes. FLUXNET data are used to calibrate a global production efficiency model (PEM). This model is forced by satellite‐measured absorbed radiation and suggests that global net primary production (NPP) increased 6.2% over 1982–1999. Good agreement is found between global trends in NPP estimated by the PEM and a dynamic global vegetation model (DGVM), and between the DGVM and estimates of global NEE derived from a global inversion of atmospheric CO2 measurements. Combining the PEM, DGVM, and inversion results suggests that CO2 fertilization is playing a major role in current increases in NPP, with lesser impacts from increasing N deposition and growing season length. Both the PEM and the inversion identify the Amazon basin as a key region for the current net terrestrial CO2 uptake (i.e. 33% of global NEE), as well as its interannual variability. The inversion's global NEE estimate of −1.2 Pg [C] yr−1 for 1982–1995 is compatible with the PEM‐ and DGVM‐predicted trends in NPP. There is, thus, a convergence in understanding derived from process‐based models, remote‐sensing‐based observations, and inversion of atmospheric data. Future advances in field measurement techniques, including eddy covariance (particularly concerning the problem of night‐time fluxes in dense canopies and of advection or flow distortion over complex terrain), will result in improved constraints on land‐atmosphere CO2 fluxes and the rigorous attribution of mechanisms to the current terrestrial net CO2 uptake and its spatial and temporal heterogeneity. Global ecosystem models play a fundamental role in linking information derived from FLUXNET measurements to atmospheric CO2 variability. A number of recommendations concerning FLUXNET data are made, including a request for more comprehensive site data (particularly historical information), more measurements in undisturbed ecosystems, and the systematic provision of error estimates. The greatest value of current FLUXNET data for global carbon cycle modelling is in evaluating process representations, rather than in providing an unbiased estimate of net CO2 exchange. 相似文献
22.
23.
24.
25.
26.
Luis M. Chiappe 《Evolution》2009,2(2):248-256
Living birds are the most diverse land vertebrates and the heirs of a rich chapter in the evolution of life. The origin of
modern birds from animals similar to Tyrannosaurus rex is among the most remarkable examples of an evolutionary transition. A wealth of recently discovered fossils has finally
settled the century-old controversy about the origin of birds and it has made the evolutionary saga toward modern birds one
of the best documented transitions in the history of life. This paper reviews the evidence in support of the origin of birds
from meat-eating dinosaurs, and it highlights the array of fossils that connect these fearsome animals with those that fly
all around us. 相似文献
27.
The Smoky Hill Member of the Niobrara Chalk in Kansas (USA) has yielded the remains of numerous members of the Hesperornithiformes, toothed diving birds from the late Early to Late Cretaceous. This study presents a new taxon of hesperornithiform from the Smoky Hill Member, Fumicollis hoffmani, the holotype of which is among the more complete hesperornithiform skeletons. Fumicollis has a unique combination of primitive (e.g. proximal and distal ends of femur not expanded, elongate pre-acetabular ilium, small and pyramidal patella) and derived (e.g. dorsal ridge on metatarsal IV, plantarly-projected curve in the distal shaft of phalanx III:1) hesperornithiform characters, suggesting it was more specialized than small hesperornithiforms like Baptornis advenus but not as highly derived as the larger Hesperornis regalis. The identification of Fumicollis highlights once again the significant diversity of hesperornithiforms that existed in the Late Cretaceous Western Interior Seaway. This diversity points to the existence of a complex ecosystem, perhaps with a high degree of niche partitioning, as indicated by the varying degrees of diving specializations among these birds. 相似文献
28.
29.
Crisponi syndrome is caused by mutations in the CRLF1 gene and is allelic to cold-induced sweating syndrome type 1 下载免费PDF全文
Crisponi L Crisponi G Meloni A Toliat MR Nurnberg G Usala G Uda M Masala M Hohne W Becker C Marongiu M Chiappe F Kleta R Rauch A Wollnik B Strasser F Reese T Jakobs C Kurlemann G Cao A Nurnberg P Rutsch F 《American journal of human genetics》2007,80(5):971-981
Crisponi syndrome is a severe autosomal recessive condition that is phenotypically characterized by abnormal, paroxysmal muscular contractions resembling neonatal tetanus, large face, broad nose, anteverted nares, camptodactyly, hyperthermia, and sudden death in most cases. We performed homozygosity mapping in five Sardinian and three Turkish families with Crisponi syndrome, using high-density single-nucleotide polymorphism arrays, and identified a critical region on chromosome 19p12-13.1. The most prominent candidate gene was CRLF1, recently found to be involved in the pathogenesis of cold-induced sweating syndrome type 1 (CISS1). CISS1 belongs to a group of conditions with overlapping phenotypes, also including cold-induced sweating syndrome type 2 and Stuve-Wiedemann syndrome. All these syndromes are caused by mutations of genes of the ciliary neurotrophic factor (CNTF)-receptor pathway. Here, we describe the identification of four different CRLF1 mutations in eight different Crisponi-affected families, including a missense mutation, a single-nucleotide insertion, and a nonsense and an insertion/deletion (indel) mutation, all segregating with the disease trait in the families. Comparison of the mutation spectra of Crisponi syndrome and CISS1 suggests that neither the type nor the location of the CRLF1 mutations points to a phenotype/genotype correlation that would account for the most severe phenotype in Crisponi syndrome. Other, still-unknown molecular factors may be responsible for the variable phenotypic expression of the CRLF1 mutations. We suggest that the syndromes can comprise a family of "CNTF-receptor-related disorders," of which Crisponi syndrome would be the newest member and allelic to CISS1. 相似文献
30.
Danilo ML Prado Fabiana B Benatti Ana L de Sá-Pinto Ana P Hayashi Bruno Gualano Rosa MR Pereira Adriana ME Sallum Eloisa Bonfá Clovis A Silva Hamilton Roschel 《Arthritis research & therapy》2013,15(2):R46