首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  20篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
11.

Background

Polymicrobial bloodstream infections (PBSIs) have been associated with complex underlying medical conditions and a high incidence of specific microorganisms in several settings, but the relevant data are scarce in neonates.

Methods

Positive blood cultures from January 2004 to December 2011 in the neonatal intensive care unit (NICU) of Chang Gung Memorial Hospital (CGMH) were reviewed. Each neonate with PBSI (case episode) was matched to two episodes of monomicrobial BSI (control episode) by birth weight, gestational age and gender. Records were reviewed to compare their underlying medical conditions, organisms isolated, adequacy of therapy, clinical characteristics and outcomes.

Results

Forty-five episodes of PBSI (4.4% of all neonatal BSIs) were identified in 43 neonates. Gram-negative organisms constituted 59.8% of all PBSI pathogens, and 33 (73.3%) of PBSIs were caused by at least one Gram-negative organism. PBSIs were significantly more likely to be the recurrent episode and have endotracheal tube in place. No significant difference was found between PBSIs and controls in terms of demographics and most chronic conditions. PBSIs were significantly associated with a higher severity of illness, a longer duration of septic symptoms, and a higher rate of modification of antimicrobial regimens than monomicrobial BSIs. However, the sepsis-attributable mortality rates were comparable between these two groups.

Conclusions

In the NICU, PBSIs were more often caused by Gram-negative bacilli, and often occurred in neonates without any chronic conditions. The clinical significance of PBSIs included a more severe illness, longer duration of septic symptoms and a higher rate of modification of antimicrobial regimens.  相似文献   
12.
13.

Background

An atypical pattern of neonatal sepsis, characterized by persistent positive blood culture despite effective antimicrobial therapy, has been correlated with adverse outcomes. However, previous studies focused only on coagulate-negative staphylococcus infection.

Methods

All episodes of persistent bloodstream infection (BSI), defined as 3 or more consecutive positive blood cultures with the same bacterial species, at least two of them 48 hours apart, during a single sepsis episode, were enrolled over an 8-year period in a tertiary level neonatal intensive care unit. These cases were compared with all non-persistent BSI during the same period.

Results

We identified 81 episodes of persistent BSI (8.5% of all neonatal late-onset sepsis) in 74 infants, caused by gram-positive pathogens (n=38, 46.9%), gram-negative pathogens (n=21, 25.9%), fungus (n=20, 24.7%) and polymicrobial bacteremia (n=2, 2.5%). Persistent BSI does not differ from non-persistent BSI in most clinical characteristics and patient demographics, but tends to have a prolonged septic course, longer duration of feeding intolerance and more frequent requirement of blood transfusions. No difference was observed for death attributable to infection (9.8% vs. 6.5%), but neonates with persistent BSI had significantly higher rates of infectious complications (29.6% vs. 9.2%, P < 0.001), death from all causes (21.6% vs. 11.7%, P = 0.025), and duration of hospitalization among survivors [median (interquartile range): 80.0 (52.5-117.5) vs. 64.0 (40.0-96.0) days, P = 0.005] than those without persistent BSI.

Conclusions

Although persistent BSI does not contribute directly to increased mortality, the associated morbidities, infectious complications and prolonged septic courses highlight the importance of aggressive treatment to optimize outcomes.  相似文献   
14.
15.
Lin WN  Luo SF  Lee CW  Wang CC  Wang JS  Yang CM 《Cellular signalling》2007,19(6):1258-1267
Lipopolysaccharide (LPS) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for LPS-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in HTSMCs. LPS-induced expression of VCAM-1 protein and mRNA in a time-dependent manner, was significantly inhibited by inhibitors of MEK1/2 (U0126), p38 (SB202190), and c-Jun-N-terminal kinase (JNK; SP600125). The involvement of p42/p44 MAPK and p38 in these responses was further confirmed by that transfection with small interference RNAs (siRNA) direct against MEK, p42, and p38 significantly attenuated LPS-induced VCAM-1 expression. Consistently, LPS-stimulated phosphorylation of p42/p44 MAPK and p38 was attenuated by pretreatment with U0126 or SB202190, and transfection with these siRNAs, respectively. In addition, LPS-induced VCAM-1 expression was significantly blocked by a specific NF-kappaB inhibitor helenalin. LPS-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha was blocked by helenalin, U0126, SB202190, or SP600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to monolayer of HTSMCs which was blocked by pretreatment with helenalin, U0126, or SP600125 prior to LPS exposure. Taken together, these results suggest that in HTSMCs, activation of p42/p44 MAPK, p38, and JNK pathways, at least in part, mediated through NF-kappaB, is essential for LPS-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of LPS action that bacterial toxins may promote inflammatory responses in the airway disease.  相似文献   
16.
Cytosolic phospholipase A(2) (cPLA(2)) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA(2) expression and PGE(2) synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we report that TNF-α-induced cPLA(2) protein and mRNA expression, PGE(2) production, and phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which were attenuated by pretreatment with a ROS scavenger [N-acetyl-L-cysteine, (NAC)] and the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNA of Nox2, p47(phox) , MEK1, p42, p38, or JNK2. TNF-α-induced cPLA(2) expression was also inhibited by pretreatment with a selective NF-κB inhibitor [helenalin (HLN)] or transfection with dominant negative mutants of NF-κB inducing kinase (NIK) or IκB kinase (IKK)α/β. TNF-α-induced NF-κB translocation was blocked by pretreatment with NAC, DPI, APO, or HLN, but not by U0126, SB202190, or SP600125. In addition, pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA blocked cPLA(2) expression and PGE(2) synthesis induced by TNF-α. We further confirmed that p300 was associated with the cPLA(2) promoter which was dynamically linked to histone H4 acetylation stimulated by TNF-α, determined by chromatin immunoprecipitation assay. Association of p300 and histone H4 to cPLA(2) promoter was inhibited by U0126, SB202190, and SP600125. These results suggested that in HTSMCs, activation of p47(phox) , MAPKs, NF-κB, and p300 is essential for TNF-α-induced cPLA(2) expression and PGE(2) release.  相似文献   
17.
18.
Heme oxygenase (HO)-1 is a stress-inducible rate-limiting enzyme in heme degradation that confers cytoprotection against oxidative injury and provides a vital function in maintaining tissue homeostasis. Increasing reports have indicated that lipoteichoic acid (LTA) exerts as LPS as an immune system-stimulating agent and plays a role in the pathogenesis of severe inflammatory responses induced by Gram-positive bacterial infection. We report that LTA is an inducer of HO-1 expression mediated through the signaling pathways in human tracheal smooth muscle cells (HTSMCs). LTA-induced HO-1 protein levels, mRNA expression, and promoter activity were attenuated by transfection with dominant negative mutants of TLR2 and MyD88, by pretreatment with the inhibitors of c-Src (PP1), NADPH oxidase (diphenylene iodonium chloride (DPI) and apocynin (APO)), and reactive oxygen species (ROS) scavenger (N-acetyl-l-cysteine) or by transfection with small interfering RNAs of Src and NF-E2-related factor 2 (Nrf2). LTA-stimulated translocation of p47(phox) and Nrf2 or ROS production was attenuated by transfection with dominant negative mutants of TLR2, MyD88, and c-Src and by pretreatment with DPI or APO. Furthermore, LTA-induced TLR2, MyD88, TNFR-associated factor (TRAF)6, c-Src, and p47(phox) complex formation was revealed by immunoprecipitation using an anti-TLR2 or anti-c-Src Ab followed by Western blot analysis against an anti-TLR2, anti-MyD88, anti-TRAF6, anti-c-Src, or anti-p47(phox) Ab. These results demonstrated that LTA-induced ROS generation was mediated through the TLR2/MyD88/TRAF6/c-Src/NADPH oxidase pathway, in turn initiates the activation of Nrf2, and ultimately induces HO-1 expression in HTSMCs.  相似文献   
19.
Interleukin-1beta (IL-1beta) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for IL-1beta-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in human tracheal smooth muscle cells (HTSMC). IL-1beta induced expression of VCAM-1 protein and mRNA in a time-dependent manner, which was significantly inhibited by inhibitors of MEK1/2 (U0126 and PD-98059), p38 (SB-202190), and c-Jun NH(2)-terminal kinase (JNK; SP-600125). Consistently, IL-1beta-stimulated phosphorylation of p42/p44 MAPK, p38, and JNK was attenuated by pretreatment with U0126, SB-202190, or SP-600125, respectively. IL-1beta-induced VCAM-1 expression was significantly blocked by the specific NF-kappaB inhibitors helenalin and pyrrolidine dithiocarbamate. As expected, IL-1beta-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha were blocked by helenalin but not by U0126, SB-202190, or SP-600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to a monolayer of HTSMC, which was blocked by pretreatment with helenalin, U0126, SB-202190, or SP-600125 before IL-1beta exposure or by anti-VCAM-1 antibody. Together, these results suggest that in HTSMC, activation of p42/p44 MAPK, p38, JNK, and NF-kappaB pathways is essential for IL-1beta-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in airway disease.  相似文献   
20.
Cell Biology and Toxicology - Previous work has shown an association between vitamin D3 deficiency and an increased risk for acquiring various inflammatory diseases. Vitamin D3 can reduce morbidity...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号