首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2028篇
  免费   173篇
  国内免费   2篇
  2022年   16篇
  2021年   27篇
  2020年   18篇
  2019年   22篇
  2018年   21篇
  2017年   29篇
  2016年   57篇
  2015年   99篇
  2014年   107篇
  2013年   149篇
  2012年   168篇
  2011年   148篇
  2010年   101篇
  2009年   81篇
  2008年   115篇
  2007年   90篇
  2006年   82篇
  2005年   76篇
  2004年   80篇
  2003年   66篇
  2002年   56篇
  2001年   55篇
  2000年   49篇
  1999年   37篇
  1998年   22篇
  1997年   22篇
  1996年   27篇
  1995年   12篇
  1994年   25篇
  1993年   12篇
  1992年   24篇
  1991年   28篇
  1990年   19篇
  1989年   12篇
  1988年   18篇
  1987年   17篇
  1986年   17篇
  1985年   15篇
  1984年   9篇
  1983年   16篇
  1982年   13篇
  1981年   11篇
  1980年   12篇
  1979年   20篇
  1978年   10篇
  1976年   19篇
  1975年   13篇
  1974年   6篇
  1973年   8篇
  1970年   8篇
排序方式: 共有2203条查询结果,搜索用时 31 毫秒
161.
To examine the structural determinants necessary for TC10 trafficking, localization, and function in adipocytes, we generated a series of point mutations in the carboxyl-terminal targeting domain of TC10. Wild-type TC10 (TC10/WT) localized to secretory membrane compartments and caveolin-positive lipid raft microdomains at the plasma membrane. Expression of a TC10/C206S point mutant resulted in a trafficking and localization pattern that was indistinguishable from that of TC10/WT. In contrast, although TC10/C209S or the double TC10/C206,209S mutant was plasma membrane localized, it was excluded from both the secretory membrane system and the lipid raft compartments. Surprisingly, inhibition of Golgi membrane transport with brefeldin A did not prevent plasma membrane localization of TC10 or H-Ras. Moreover, inhibition of trans-Golgi network exit with a 19 degrees C temperature block did not prevent the trafficking of TC10 or H-Ras to the plasma membrane. These data demonstrate that TC10 and H-Ras can both traffic to the plasma membrane by at least two distinct transport mechanisms in adipocytes, one dependent upon intracellular membrane transport and another independent of the classical secretory membrane system. Moreover, the transport through the secretory pathway is necessary for the localization of TC10 to lipid raft microdomains at the plasma membrane.  相似文献   
162.
This study used an immunohistochemical technique to assess the expression of epidermal growth factor (EGF) in 40 specimens of salivary adenoid cystic carcinoma (ACC), 7 specimens of labial glands adjacent to mucocele, and 5 specimens of normal submandibular glands. In normal submandibular glands, immunohistochemically detectable EGF was demonstrated in all ductal segments, including intercalated, striated, and excretory duct cells. No EGF positive staining was found in acinar compartments. including serous and mucous acinar cells. In degenerated labial glands adjacent to mucocele, no EGF staining was detected in the remaining acinar and ductal cells. In salivary ACCs, positive EGF immunostaining was observed in one of the 5 (20%) ACCs with a solid pattern and in 13 of the 35 (37.1%) ACCs with a tubular-cribriform pattern. The overall EGF expression rate in 40 salivary ACCs was 35%. Positive EGF staining was predominantly found in tubular structures in the tubular ACCs and in duct-like structures in large cribriform patterns or in the stroma of the cribriform ACCs. There was no significant correlation between EGF expression in salivary ACCs and any of the clinicopathological parameters including patient age and sex, cancer location, TNM status, clinical stage, histologic type, perivascular or perineural invasion, focal necrosis of tumor, and cellular atypia. We conclude that the duct segments of the normal submandibular gland are the sites of EGF synthesis and secretion. In degenerated labial glands adjacent to mucocele, EGF synthesis is completely inhibited. Furthermore, EGF is mainly biosynthesized in cells forming tubular or duct-like structures in tubular or cribriform salivary ACCs, and EGF may play a biologic role, particularly as a mitogen in salivary ACC growth.  相似文献   
163.
Adenine-DNA glycosylase MutY of Escherichia coli catalyzes the cleavage of adenine when mismatched with 7,8-dihydro-8-oxoguanine (GO), an oxidatively damaged base. The biological outcome is the prevention of C/G→A/T transversions. The molecular mechanism of base excision repair (BER) of A/GO in mammals is not well understood. In this study we report stimulation of mammalian adenine-DNA glycosylase activity by apurinic/apyrimidinic (AP) endonuclease using murine homolog of MutY (Myh) and human AP endonuclease (Ape1), which shares 94% amino acid identity with its murine homolog Apex. After removal of adenine by the Myh glycosylase activity, intact AP DNA remains due to lack of an efficient Myh AP lyase activity. The study of wild-type Ape1 and its catalytic mutant H309N demonstrates that Ape1 catalytic activity is required for formation of cleaved AP DNA. It also appears that Ape1 stimulates Myh glycosylase activity by increasing formation of the Myh–DNA complex. This stimulation is independent of the catalytic activity of Ape1. Consequently, Ape1 preserves the Myh preference for A/GO over A/G and improves overall glycosylase efficiency. Our study suggests that protein–protein interactions may occur in vivo to achieve efficient BER of A/GO.  相似文献   
164.
165.
166.
Two major T cell determinants are recognized by I-Ar-specific T cells in CII, the immunodominant CII610-618 (GPAGT AGA R) within CB10 and the subdominant CII445-453 (GPAGP AGE R) within CB8. Although the determinants differ by only two residues, CB8 is capable of inducing collagen-induced arthritis (CIA), while CB10 is not. We, therefore, investigated the structural differences between the two determinants that are critical to inducing arthritis. When the CB10 determinant was mutated to that of CB8 using recombinant techniques, the resulting mutant rCB10T614P,A617E product became arthritogenic. Conversely, when the CB8 determinant was mutated to that of CB10, the resulting mutant CB8P449T,E452A was no longer arthritogenic. Comparison of the epitope specificity of the autoantibodies induced by wild-type CB10 and mutant rCB10T614P, A617E revealed no qualitative differences. T cells from mice immunized with either CB10 or mutant rCB10 produced predominantly Th1 cytokines when cultured with the immunizing Ag. In contrast, when cultured with mouse CII, T cells from mice immunized with the nonarthritogenic CB10 produced predominantly Th2 (IL-4 and IL-10) cytokines whereas the arthritogenic mutant rCB10 induced predominantly Th1 (IFN-gamma) cytokines. We conclude that the T cell cytokine response most critical for the induction of CIA is that induced against the corresponding homologous murine T cell determinant and, further, that the structural differences between the T cell determinants in CB8 and -10 are important in breaking self tolerance and inducing autoimmune response.  相似文献   
167.
168.
Fructose-1,6-diphosphate (FDP) is a glycolytic intermediate which has been used an intervention in various ischemic conditions for two decades. Yet whether FDP can enter the cell is under constant debate. In this study we examined membrane permeability of FDP in artificial membrane bilayers and in endothelial cells. To examine passive diffusion of FDP through the membrane bilayer, L-a-phosphatidylcholine from egg yolk (Egg PC) (10 mM) multi-lamellar vesicles were created containing different external concentrations of FDP (0, 0.5, 5 and 50 mM). The passive diffusion of FDP into the vesicles was followed spectrophotometrically. The results indicate that FDP diffuses through the membrane bilayer in a dose-dependent fashion. The movement of FDP through Egg PC membrane bilayers was confirmed by measuring the conversion of FDP to dihydroxyacetone-phosphate and the formation of hydrozone. FDP (0, 0.5, 5 or 50 mM) was encapsulated in Egg PC multilamellar vesicles and placed in a solution containing aldolase. In the 5 and 50 mM FDP groups there was a significant increase in dihydroxyacetone/hydrazone indicating that FDP crossed the membrane bilayer intact. We theorized that the passive diffusion of FDP might be due to disruption of the membrane bilayer. To examine this hypothesis, small unilamellar vesicles composed of Egg PC were created in the presence of 60 mM carboxyfluorescein, and the leakage of the sequestered dye was followed upon addition of various concentrations of FDP, fructose, fructose-6-phosphate, or fructose-1-phosphate (0, 5 or 50 mM). These results indicate that increasing concentrations of FDP increase the leakage rate of carboxyfluorescein. In contrast, no concentration of fructose, fructose-6-phosphate, or fructose-1-phosphate resulted in any significant increase in membrane permeability to carboxyfluorescein. To examine whether FDP could pass through cellular membranes, we examined the uptake of 14C-FDP by endothelial cells cultured under hypoxia or normoxia for 4 or 16 h. The uptake of FDP was dose-dependent in both the normoxia and hypoxia treated cells, and was accompanied by no significant loss in endothelial cell viability. Our results demonstrate that FDP can diffuse through membrane bilayers in a dose-dependent manner.  相似文献   
169.
Exposure of cells to oxidants increases the phosphorylation of the Src family tyrosine protein kinase Lck at Tyr-394, a conserved residue in the activation loop of the catalytic domain. Kinase-deficient Lck expressed in fibroblasts that do not express any endogenous Lck has been shown to be phosphorylated at Tyr-394 following H(2)O(2) treatment to an extent indistinguishable from that seen with wild type Lck. This finding indicates that a kinase other than Lck itself is capable of phosphorylating Tyr-394. Because fibroblasts express other Src family members, it remained to be determined whether the phosphorylation of Tyr-394 was carried out by another Src family kinase or by an unrelated tyrosine protein kinase. We examined here whether Tyr-394 in kinase-deficient Lck was phosphorylated following exposure of cells devoid of endogenous Src family kinase activity to H(2)O(2). Strikingly, treatment of such cells with H(2)O(2) led to the phosphorylation of Tyr-394 to an extent identical to that seen with wild type Lck, demonstrating that Src family kinases are not required for H(2)O(2)-induced phosphorylation of Lck. Furthermore, this efficient phosphorylation of Lck at Tyr-394 in non-lymphoid cells suggests the existence of an ubiquitous activator of Src family kinases.  相似文献   
170.
Fructose-1,6-bisphosphatase (FBPase) is targeted to the vacuole for degradation when Saccharomyces cerevisiae are shifted from low to high glucose. Before vacuolar import, however, FBPase is sequestered inside a novel type of vesicle, the vacuole import and degradation (Vid) vesicles. Here, we reconstitute import of FBPase into isolated Vid vesicles. FBPase sequestration into Vid vesicles required ATP and cytosol, but was inhibited if ATP binding proteins were depleted from the cytosol. The heat shock protein Ssa2p was identified as one of the ATP binding proteins involved in FBPase import. A Deltassa2 strain exhibited a significant decrease in the rate of FBPase degradation in vivo as compared with Deltassa1, Deltassa3, or Deltassa4 strains. Likewise, in vitro import was impaired for the Deltassa2 strain, but not for the other Deltassa strains. The cytosol was identified as the site of the Deltassa2 defect; Deltassa2 cytosol did not stimulate FBPase import into import competent Vid vesicles, but wild-type cytosol supported FBPase import into competent Deltassa2 vesicles. The addition of purified recombinant Ssa2p stimulated FBPase import into Deltassa2 Vid vesicles, providing Deltassa2 cytosol was present. Thus, Ssa2p, as well as other undefined cytosolic proteins are required for the import of FBPase into vesicles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号