首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2010篇
  免费   170篇
  国内免费   2篇
  2022年   13篇
  2021年   28篇
  2020年   18篇
  2019年   21篇
  2018年   21篇
  2017年   29篇
  2016年   58篇
  2015年   100篇
  2014年   103篇
  2013年   146篇
  2012年   164篇
  2011年   148篇
  2010年   102篇
  2009年   80篇
  2008年   112篇
  2007年   88篇
  2006年   83篇
  2005年   76篇
  2004年   78篇
  2003年   67篇
  2002年   56篇
  2001年   56篇
  2000年   49篇
  1999年   37篇
  1998年   21篇
  1997年   21篇
  1996年   26篇
  1995年   11篇
  1994年   24篇
  1993年   12篇
  1992年   24篇
  1991年   29篇
  1990年   20篇
  1989年   12篇
  1988年   18篇
  1987年   17篇
  1986年   17篇
  1985年   15篇
  1984年   9篇
  1983年   16篇
  1982年   13篇
  1981年   11篇
  1980年   11篇
  1979年   20篇
  1978年   10篇
  1976年   19篇
  1975年   12篇
  1974年   6篇
  1973年   8篇
  1970年   8篇
排序方式: 共有2182条查询结果,搜索用时 15 毫秒
151.
152.
By screening potential inhibitors of drug metabolism using the in vitro models, potential drug-drug interactions in vivo may be predicted with the use of appropriate pharmacokinetic principles. This study aimed to develop a rapid screening system using human liver microsomes to efficiently identify the potential inhibitors of DMXAA metabolism. Initial IC50 was estimated by using a two-point method, and then Ki values were determined if required and compared with those initial IC50 values. More than 100 compounds including known substrates and inhibitors of human uridine diphosphate glucuronosyltransferases (UGTs) and cytochrome P450 (CYP), anti-cancer drugs and xanthenone analogues were screened for their inhibitory effect on DMXAA glucuronidation and 6-methylhydroxylation in human liver microsomes. Both metabolites of DMXAA, DMXAA acyl glucuronide (DMXAA-G) and 6-hydroxymethyl-5-methylxanthenone-4-acetic acid (6-OH-MXAA), formed in human liver microsomes were quantitated by validated HPLC methods. The results indicated that there was a significant relationship (r2 = 0.966, P < 0.001) between the two-point IC50 values and the apparent Ki values for 20 compounds showing significant inhibitory effects on DMXAA metabolism, suggesting the usefulness of the two-point determination for the initial screening of compounds. This study has been completed using a strategy for rapid HPLC analysis and thus provided early access to detailed information for potential inhibitors of DMXAA metabolism and allows for further DMXAA-drug interaction studies.  相似文献   
153.
Intracellular pH (pH(i)) exerts considerable influence on cardiac contractility and rhythm. Over the last few years, extensive progress has been made in understanding the system that controls pH(i) in animal cardiomyocytes. In addition to the housekeeping Na(+)-H(+) exchanger (NHE), the Na(+)-HCO(3)(-) symporter (NHS) has been demonstrated in animal cardiomyocytes as another acid extruder. However, whether the NHE and NHS functions exist in human atrial cardiomyocytes remains unclear. We therefore investigated the mechanism of pH(i) recovery from intracellular acidosis (induced by NH(4)Cl prepulse) using intracellular 2',7'-bis(2-carboxethyl)-5(6)-carboxy-fluorescein fluorescence in human atrial myocardium. In HEPES (nominally HCO(3)(-)-free) Tyrode solution, pH(i) recovery from induced intracellular acidosis could be blocked completely by 30 microM 3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE 694), a specific NHE inhibitor, or by removing extracellular Na(+). In 3% CO(2)-HCO(3)(-) Tyrode solution, HOE 694 only slowed the pH(i) recovery, while addition of HOE 694 together with 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (an NHS inhibitor) or removal of extracellular Na(+) inhibited the acid extrusion entirely. Therefore, in the present study, we provided evidence that two acid extruders involved in acid extrusion in human atrial myocytes, one which is HCO(3)(-) independent and one which is HCO(3)(-) dependent, are mostly likely NHE and NHS, respectively. When we checked the percentage of contribution of these two carriers to pH(i) recovery following induced acidosis, we found that the activity of NHE increased steeply in the acid direction, while that of NHS did not change. Our present data indicate for the first time that two acid extruders, NHE and NHS, exist functionally and pH(i) dependently in human atrial cardiomyocytes.  相似文献   
154.
Genistein is an isoflavone with potent inhibitory activity on protein tyrosine kinase. Previous studies have shown that genistein has additional effects, among which the direct blocking effects on various ionic channels have recently been disclosed. Using whole-cell voltage clamp and current clamp techniques, we demonstrate that micromolar concentrations of genistein dose-dependently and reversibly inhibit the inward rectifying K(+) current, and depolarize the resting membrane potential, resulting in abnormal automaticity in guinea pig ventricular myocytes. Interestingly, another potent tyrosine kinase inhibitor, tyrphostin 51, did not produce the same inhibitory effect, while the inactive analogue of genistein, daidzein, had a similar blocking effect. We suggest that genistein directly blocks the inward rectifying K(+) current in ventricular myocytes, and one should be cautious of its pro-arrhythmic effect in clinical use.  相似文献   
155.
156.
MOTIVATION: Research on roles of gene products in cells is accumulating and changing rapidly, but most of the results are still reported in text form and are not directly accessible by computers. To expedite the progress of functional bioinformatics, it is, therefore, important to efficiently process large amounts of biomedical literature and transform the knowledge extracted into a structured format usable by biologists and medical researchers. Our aim was to develop an intelligent text-mining system that will extract from biomedical documents knowledge about the functions of gene products and thus facilitate computing with function. RESULTS: We have developed an ontology-based text-mining system to efficiently extract from biomedical literature knowledge about the functions of gene products. We also propose methods of sentence alignment and sentence classification to discover the functions of gene products discussed in digital texts. AVAILABILITY: http://ismp.csie.ncku.edu.tw/~yuhc/meke/  相似文献   
157.
Single-cell transcript analysis of pancreas development   总被引:9,自引:0,他引:9  
  相似文献   
158.
In vitro and in vivo evidence indicates that circulating platelets affect both vascular integrity and hemostasis. How platelets enhance the permeability barrier of the vascular endothelium is not well understood. We measured the effect of isolated human platelets on human pulmonary artery endothelial cell (EC) barrier integrity by monitoring transmonolayer electrical resistance. EC barrier function was significantly increased by the addition of platelets ( approximately 40% maximum, 2.5 x 106 platelets/ml). Platelet supernatants, derived from 2.5 x 106 platelets/ml, reproduced the barrier enhancement and reversed the barrier dysfunction produced by the edemagenic agonist thrombin, which implicates a soluble barrier-promoting factor. The barrier-enhancing effect of platelet supernatants was heat stable but was attenuated by either charcoal delipidation (suggesting a vasoactive lipid mediator) or pertussis toxin, implying involvement of a Gialpha-coupled receptor signal transduction pathway. Sphingosine-1-phosphate (S1P), a sphingolipid that is released from activated platelets, is known to ligate G protein-coupled EC differentiation gene (EDG) receptors, increase EC electrical resistance, and reorganize the actin cytoskeleton (Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, and English D. J Clin Invest 108: 689-701, 2001). Infection of EC with an adenoviral vector expressing an antisense oligonucleotide directed against EDG-1 but not infection with control vector attenuated the barrier-enhancing effect of both platelet supernatants and S1P. These results indicate that a major physiologically relevant vascular barrier-protective mediator produced by human platelets is S1P.  相似文献   
159.
The incidence of obesity has reached epidemic proportions within industrial societies; however, research on human obesity has been hampered by our inability to control genetic and environmental factors. The control of energy homeostasis appears to be conserved among species. Recent creative research in Caenorhabditis elegans, including the application of a genome-wide RNA interference analysis, has provided insight into the genes involved in energy balance. In this article, we discuss the results of these studies and their potential importance to humans.  相似文献   
160.
Insulin stimulates glucose uptake in fat and muscle cells via the translocation of the GLUT4 glucose transporter from intracellular storage vesicles to the cell surface. The signaling pathways linking the insulin receptor to GLUT4 translocation in adipocytes involve activation of the Rho family GTPases TC10alpha and beta. We report here the identification of TCGAP, a potential effector for Rho family GTPases. TCGAP consists of N-terminal PX and SH3 domains, a central Rho GAP domain and multiple proline-rich regions in the C-terminus. TCGAP specifically interacts with cdc42 and TC10beta through its GAP domain. Although it has GAP activity in vitro, TCGAP is not active as a GAP in intact cells. TCGAP translocates to the plasma membrane in response to insulin in adipocytes. The N-terminal PX domain interacts specifically with phos phatidylinositol-(4,5)-bisphosphate. Overexpression of the full-length and C-terminal fragments of TCGAP inhibits insulin-stimulated glucose uptake and GLUT4 translocation. Thus, TCGAP may act as a downstream effector of TC10 in the regulation of insulin-stimulated glucose transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号