首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4771篇
  免费   434篇
  国内免费   4篇
  5209篇
  2022年   42篇
  2021年   75篇
  2020年   26篇
  2019年   39篇
  2018年   63篇
  2017年   48篇
  2016年   113篇
  2015年   242篇
  2014年   250篇
  2013年   312篇
  2012年   432篇
  2011年   380篇
  2010年   202篇
  2009年   176篇
  2008年   236篇
  2007年   244篇
  2006年   234篇
  2005年   212篇
  2004年   198篇
  2003年   171篇
  2002年   162篇
  2001年   148篇
  2000年   136篇
  1999年   106篇
  1998年   50篇
  1997年   39篇
  1996年   40篇
  1995年   30篇
  1994年   30篇
  1993年   31篇
  1992年   70篇
  1991年   70篇
  1990年   59篇
  1989年   61篇
  1988年   58篇
  1987年   60篇
  1986年   37篇
  1985年   20篇
  1984年   31篇
  1983年   22篇
  1982年   14篇
  1981年   17篇
  1979年   26篇
  1978年   23篇
  1977年   14篇
  1976年   17篇
  1975年   18篇
  1974年   23篇
  1973年   22篇
  1972年   11篇
排序方式: 共有5209条查询结果,搜索用时 15 毫秒
201.
202.
203.
204.
205.
In the spring of 2007, a serious disease on amaranth was noticed in several farms in the major amaranth production area in central Taiwan. Abundant oospores were found in the disease tissues. A species of Phytophthora was consistently isolated from disease tissues. The organism formed abundant oospores with smooth walls and with amphigynous antheridia in single culture. Sporangia were partially deciduous with short‐ to medium‐length pedicels. Morphological characteristics of this organism did not match any reported Phytophthora species, and the organism was named Phytophthora amaranthi. Pathogenicity tests and molecular characterization confirmed the identity of the organism as a new pathogen of amaranth and a new species of Phytophthora.  相似文献   
206.

Key message

Stem reorientation is critical to tree survival. With anatomical observation and strain measurement, the tension wood formation and biomechanical behavior were studied to gain insights into tree uprighting process.

Abstract

Tension wood plays a role in maintaining the mechanical stability of angiosperm trees. Both biological and physical aspects of tension wood are essential in understanding the mechanism of trunk or branch reorientation. In this study, we worked on both tension wood formation and its biomechanical function in artificially inclined 2-year-old Koelreuteria henryi seedlings. The tension wood formation and reorientation process of the trunk last for about 3 months. With pinning method, we confirmed that at the beginning of inclination the cambial zone including the vascular cambium and the developing normal wood fibers on the upper side of the inclined trunk perceives the onset of mechanical change and starts to produce G-fibers that generate a strong contractile released growth strain (RGS) for gravitropic correction. Stronger contractile RGS and more tension wood were found at the trunk base than at the half-height, suggesting that the trunk base plays a key role in trunk uprighting of K. henryi seedlings. The eccentric cambial growth in the tension wood side increases the efficiency of gravitropic correction and the compressive strains measured in the opposite wood of some inclined seedlings also help the upright movement.
  相似文献   
207.
208.
Cell adhesion to a scaffold is a prerequisite for tissue engineering. Many studies have been focused on enhancing cell adhesion to synthetic materials that are used for scaffold fabrication. Previously, we showed that immobilization of biotin molecules to chondrocyte surfaces enhanced cell adhesion to avidin-coated biodegradable polymers such as poly-L-lactic acid, poly-D,L-lactic acid and polycaprolactone. However, the endocytosis of cell membrane biotin molecules decreases binding strength between biotinylated-chondrocytes (B-chondrocytes) and avidin-coated substrata, and therefore decreases cell spreading and discourages long-term chondrocytes culture. In this study, we proposed two strategies to solve the shortcoming of the avidin-biotin binding system. First, the avidin-biotin binding system is combined with the intrinsic integrin-dependent adhesion systems in order to enhance long-term cell culture. Second, the incubation temperature is lowered in order to slow down the endocytosis process. We found that the avidin-biotin binding system in combination with FN-integrin binding system enhanced cell adhesion, cell spreading and cell growth. Decrease of cell culture temperature to 4 degrees C enhanced the adhesion of B-chondrocytes to the avidin-coated surfaces, but decreased cell viability and proliferation, compared to culture temperature of 37 degrees C. Whether there is an optimal seeding temperature between 4 and 37 degrees C for both adhesion and proliferation of B-chondrocytes needs further investigation. Our results indicated that modulation of the adhesion conditions could further enhance the efficacy of the avidin-biotin binding system in mediating cell adhesion, and subsequent tissue culture.  相似文献   
209.
Based on the prediction that histone lysine demethylases may contain the JmjC domain, we examined the methylation patterns of five knock-out strains (ecm5Delta, gis1Delta, rph1Delta, jhd1Delta, and jhd2Delta (yjr119cDelta)) of Saccharomyces cerevisiae. Mass spectrometry (MS) analyses of histone H3 showed increased modifications in all mutants except ecm5Delta. High-resolution MS was used to unequivocally differentiate trimethylation from acetylation in various tryptic fragments. The relative abundance of specific fragments indicated that histones K36me3 and K4me3 accumulate in rph1Delta and jhd2Delta strains, respectively, whereas both histone K36me2 and K36me accumulate in gis1Delta and jhd1Delta strains. Analyses performed with strains overexpressing the JmjC proteins yielded changes in methylation patterns that were the reverse of those obtained in the complementary knock-out strains. In vitro enzymatic assays confirmed that the JmjC domain of Rph1 specifically demethylates K36me3 primarily and K36me2 secondarily. Overexpression of RPH1 generated a growth defect in response to UV irradiation. The demethylase activity of Rph1 is responsible for the phenotype. Collectively, in addition to Jhd1, our results identified three novel JmjC domain-containing histone demethylases and their sites of action in budding yeast S. cerevisiae. Furthermore, the methodology described here will be useful for identifying histone demethylases and their target sites in other organisms.  相似文献   
210.
Bugni JM  Han J  Tsai MS  Hunter DJ  Samson LD 《DNA Repair》2007,6(8):1116-1126
The DNA repair protein, O(6)-methylguanine DNA-methyltransferase (MGMT) prevents mutations and cell death that result from aberrant alkylation of DNA. The polymorphic variants Leu84Phe, Ile143Val, and Lys178Arg are frequent in the human population. We review here studies of these and other MGMT polymorphisms and their association with risk for lung, breast, colorectal and endometrial cancer with a consideration of gene-environment interactions. In addition, we review studies of the effects of polymorphic variation on alkyltransferase activity and expression. It is formally possible that polymorphic variation could modify functions of MGMT other than its alkyltransferase activity. While it was previously reported that an alkylated form of MGMT modifies Estrogen Receptor alpha activity, from our studies we conclude that this regulation is not a major function of MGMT. Overall, the effects of polymorphic variation on protein function are subtle, and further investigation is required to provide a comprehensive mechanism that explains the observed associations of these variants with risk for cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号