首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   863篇
  免费   153篇
  国内免费   4篇
  2023年   4篇
  2022年   14篇
  2021年   28篇
  2020年   21篇
  2019年   37篇
  2018年   51篇
  2017年   25篇
  2016年   26篇
  2015年   59篇
  2014年   56篇
  2013年   47篇
  2012年   64篇
  2011年   72篇
  2010年   57篇
  2009年   32篇
  2008年   35篇
  2007年   27篇
  2006年   31篇
  2005年   35篇
  2004年   27篇
  2003年   33篇
  2002年   19篇
  2001年   16篇
  2000年   16篇
  1999年   11篇
  1998年   5篇
  1997年   10篇
  1996年   7篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   6篇
  1989年   7篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   9篇
  1977年   5篇
  1976年   3篇
  1975年   9篇
  1974年   10篇
  1973年   5篇
  1968年   2篇
排序方式: 共有1020条查询结果,搜索用时 93 毫秒
901.
902.
Mammalian LGN/AGS3 proteins and their Drosophila Pins orthologue are cytoplasmic regulators of G-protein signaling. In Drosophila, Pins localizes to the lateral cortex of polarized epithelial cells and to the apical cortex of neuroblasts where it plays important roles in their asymmetric division. Using overexpression studies in different cell line systems, we demonstrate here that, like Drosophila Pins, LGN can exhibit enriched localization at the cell cortex, depending on the cell cycle and the culture system used. We find that in WISH, PC12, and NRK but not COS cells, LGN is largely directed to the cell cortex during mitosis. Overexpression of truncated protein domains further identified the Galpha-binding C-terminal portion of LGN as a sufficient domain for cortical localization in cell culture. In mitotic COS cells that normally do not exhibit cortical LGN localization, LGN is redirected to the cell cortex upon overexpression of Galpha subunits of heterotrimeric G-proteins. The results also show that the cortical localization of LGN is dependent on microfilaments and that interfering with LGN function in cultured cell lines causes early disruption to cell cycle progression.  相似文献   
903.
Solid-state NMR and CD spectroscopy were used to study the effect of antimicrobial peptides (aurein 1.2, citropin 1.1, maculatin 1.1 and caerin 1.1) from Australian tree frogs on phospholipid membranes. 31P NMR results revealed some effect on the phospholipid headgroups when the peptides interact with DMPC/DHPC (dimyristoylphosphatidylcholine/dihexanoylphosphatidylcholine) bicelles and aligned DMPC multilayers. 2H NMR showed a small effect of the peptides on the acyl chains of DMPC in bicelles or aligned multilayers, suggesting interaction with the membrane surface for the shorter peptides and partial insertion for the longer peptides. 15N NMR of selectively labelled peptides in aligned membranes and oriented CD spectra indicated an alpha-helical conformation with helix long axis approximately 50 degrees to the bilayer surface at high peptide concentrations. The peptides did not appear to insert deeply into PC membranes, which may explain why these positively charged peptides preferentially lyse bacterial rather than eucaryotic cells.  相似文献   
904.
Mgr,a novel global regulator in Staphylococcus aureus   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   
905.
Zhao B  Moochhala SM  Tham Sy  Lu J  Chia M  Byrne C  Hu Q  Lee LK 《Life sciences》2003,73(20):2625-2630
Several studies have shown that the angiotensin-converting enzyme (ACE) I allele is associated with enhanced physical performance. We investigated whether this phenomenon is observed in a cohort of 67 Chinese men in Singapore. Angiotensin-converting enzyme ID polymorphism was typed with PCR method and maximal oxygen uptake (VO(2max)) of the DD, ID, and II genotypes was compared. Analysis of covariance revealed that VO(2max) was significantly higher (p<0.05) for the DD genotype (57.86 +/- 3.5 ml.kg.(-1)min(-1)) versus the ID (50.58 +/- 1.80 ml.kg.(-1)min(-1)) or II (50.48 +/- 1.58 ml.kg.(-1) min(-1)) genotype. Our findings suggest that the ACE DD genotype in young adult Chinese males is associated with higher levels of VO(2max).  相似文献   
906.
DNA damages by reactive nitrogen oxide species may contribute to the multistage carcinogenesis processes associated with chronic infections and inflammation. The nitrated DNA adducts 8-nitroguanine (8NG) and 8-nitroxanthine (8NX) have been shown to derive from these reactive nitrogen oxide species, but they are not stable in DNA since they undergo spontaneous depurination. We herein report that hemin and hemoproteins, including hemoglobin and cytochrome c, mediate reduction of 8NG and 8NX to their corresponding amino analogues in the presence of reducing agents under physiologically relevant conditions. This reaction is believed to involve the reduced heme moiety produced from the reduction of oxidized hemoglobin or cytochrome c by reducing agents. The combination of hemoglobin and dihydrolipoic acid generated the reduced products in high yields. Ascorbate, quercetin, and glutathione are also capable of reducing these nitrated DNA adducts. The hemoglobin macromolecule reduces 8NG and 8NX formed in nitryl chloride-treated calf thymus DNA, as evidenced by the formation of the amino adducts using reversed-phase HPLC with photodiode array detection. Hemin is more efficient than equal molar of heme on hemoglobin in reducing 8NG-containing DNA, indicating the role of protein in impeding the reaction. Furthermore, we also show that the reduction product 8-aminoguanine is persistent on DNA. These findings suggest that reduction of nitrated DNA by the heme/antioxidant system might represent a possible in vivo pathway to modify DNA nitration.  相似文献   
907.
Glucosyltransferases (GtfB/C/D) in Streptococcus mutans are responsible for synthesizing water-insoluble and water-soluble glucans from sucrose and play very crucial roles in the formation of dental plaque. A monoclonal antibody against a 19-mer peptide fragment named Gtf-P1 was found in GtfC to reduce the enzyme activity to 50%. However, a similar experiment suggested almost unchanged activity in GtfD, despite of the very high sequence homology between the two enzymes. No further details are yet available to elucidate the biochemical mechanism responsible for such discrimination. For a better understanding of the catalytic behavior of these glucosyltransferases, structural and functional analyses were performed. First, the exact epitope was identified to specify the residue(s) required for monoclonal antibody recognition. The results suggest that the discrimination is determined solely by single residue substitution. Second, based on a combined sequence and secondary structure alignment against known crystal structure of segments from closely related proteins, a three-dimensional homology model for GtfC was built. Structural analysis for the region communicating between Gtf-P1 and the catalytic triad revealed the possibility for an "en bloc" movement of hydrophobic residues, which may transduce the functional influence on enzyme activity from the surface of molecule into the proximity of the active site. Figure Side chain interactions between Gtf-P1 and catalytic Asp-477 in GtfC. Calpha-tracing of GtfC with the two crucial peptides (Gtf-P1, orange; Gtf-P2, blue) and the catalytic triad residues ( red) highlighted to show their relative spatial organization. Side chains for the residues are also depicted according to their atom types. The structure is viewed with the barrel opening facing down  相似文献   
908.
To test the efficacy of combined high-throughput analyses (HTA) in target gene identification, screening criteria were set using >fivefold difference by microarray and statistically significant changes (p<0.01) in SAGE and EST. Microarray analysis of two normal and seven breast cancer samples found 129 genes with >fivefold changes. Further SAGE and EST analyses of these genes identified four qualified genes, ERBB2, GATA3, AGR2, and ANXA1. Their expression pattern was validated by RT-PCR in both breast cell lines and tissue samples. Loss of ANXA1 in breast cancer was further confirmed at mRNA level by Human Breast Cancer Tissue Profiling Array and at protein level by immunohistochemical staining. This study demonstrated that combined HTA effectively narrowed the number of genes for further study, while retaining the sensitivity in identifying biologically important genes such as ERBB2 and ANXA1. A distinctive loss of ANXA1 in breast cancer suggests its involvement in maintaining normal breast biology.  相似文献   
909.
Kang CB  Tai J  Chia J  Yoon HS 《FEBS letters》2005,579(6):1469-1476
Bcl-2 contains an unusually long loop between the first and the second helices. This loop has been shown to be highly flexible based on NMR and X-ray crystallographic analyses of this region. Bcl-2 is regulated at the posttranslational level through phosphorylation of specific residues within the flexible loop. The biological role and posttranslational modifications of the loop of Bcl-2 is currently unclear. FK-506 binding protein 38 (FKBP38) has been reported to interact with Bcl-2, suggesting that FKBP38 could act as a docking molecule to localize Bcl-2 at the mitochondrial membrane [Shirane, M. and Nakayama, K.I. (2003) Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat. Cell Biol. 5, 28-37]. Here, we investigated the molecular interaction between FKBP38 and Bcl-2, and demonstrated that Bcl-2 interacts with FKBP38 through the unstructured loop, and the interaction appears to regulate phosphorylation in the loop of Bcl-2.  相似文献   
910.

Background  

A key event in plant morphogenesis is the establishment of a division plane. A plant-specific microtubular preprophase band (PPB) accurately predicts the line of cell division, whereas the phragmoplast, another plant-specific array, executes cell division by maintaining this predicted line. Although establishment of these specific arrays apparently involves intracellular repolarization events that focus cellular resources to a division site, it still remains unclear how microtubules position the cell division planes. Here we study GFP-AtEB1 decorated microtubule plus-ends to dissect events at the division plane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号