首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3438篇
  免费   397篇
  国内免费   13篇
  2023年   12篇
  2022年   41篇
  2021年   81篇
  2020年   57篇
  2019年   85篇
  2018年   104篇
  2017年   61篇
  2016年   95篇
  2015年   193篇
  2014年   218篇
  2013年   244篇
  2012年   283篇
  2011年   283篇
  2010年   184篇
  2009年   165篇
  2008年   182篇
  2007年   166篇
  2006年   166篇
  2005年   151篇
  2004年   145篇
  2003年   106篇
  2002年   110篇
  2001年   73篇
  2000年   74篇
  1999年   61篇
  1998年   35篇
  1997年   20篇
  1996年   17篇
  1995年   11篇
  1994年   13篇
  1993年   12篇
  1992年   35篇
  1991年   26篇
  1990年   23篇
  1989年   26篇
  1988年   31篇
  1987年   22篇
  1986年   24篇
  1985年   17篇
  1984年   20篇
  1983年   18篇
  1982年   15篇
  1981年   11篇
  1980年   10篇
  1979年   18篇
  1977年   9篇
  1975年   15篇
  1974年   19篇
  1973年   9篇
  1972年   7篇
排序方式: 共有3848条查询结果,搜索用时 375 毫秒
921.
Clinically significant antibiotic resistance has evolved against virtually every antibiotic deployed. Yet the development of new classes of antibiotics has lagged far behind our growing need for such drugs. Rather than focusing on therapeutics that target in vitro viability, much like conventional antibiotics, an alternative approach is to target functions essential for infection, such as virulence factors required to cause host damage and disease. This approach has several potential advantages including expanding the repertoire of bacterial targets, preserving the host endogenous microbiome, and exerting less selective pressure, which may result in decreased resistance. We review new approaches to targeting virulence, discuss their advantages and disadvantages, and propose that in addition to targeting virulence, new antimicrobial development strategies should be expanded to include targeting bacterial gene functions that are essential for in vivo viability. We highlight both new advances in identifying these functions and prospects for antimicrobial discovery targeting this unexploited area.  相似文献   
922.
923.
Overexpression of the oncogene c-Myc sensitizes many apoptotic signals through the activation of mitochondrial apoptosis pathway. However, the underling mechanism has not been clearly defined. Here, we investigated the effect of c-Myc expression on histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA)-induced apoptosis in rat fibroblast cells possessing various c-Myc levels. In Rat 1a cells overexpressing c-Myc, SAHA-induced enhanced the cell death response relative to the parental cells; whereas Rat 1a cells lacking c-Myc were refractory to SAHA treatment. We demonstrated that SAHA selectively induced the expression of pro-apoptotic BH3-only protein Bim, leading to Bax activation in c-Myc-expressing cells. Where c-Myc was absent, Bim, despite its induction by SAHA, failed to activate Bax and was unable to induce apoptosis. These results indicate that c-Myc is dispensable for Bim induction by SAHA, but is required for subsequent Bax activation. We further show that the expression levels of anti-apoptotic Bcl-2/Bcl2-xL were much elevated in Myc-null cells compared with the c-Myc-expressing cells; furthermore, depletion of Bcl-2/Bcl-xL in these cells restored the ability of SAHA to induce apoptosis by enhancing Bax activation. These data indicate that SAHA induces apoptosis through Bim-triggered Bax activation and that c-Myc regulates this process by modulating Bcl-2/Bcl-xL. Our results provide novel insight into the mechanism whereby Myc sensitizes the apoptotic signals; furthermore, our data suggest that cancer cells with deregulated Myc might be more sensitive to SAHA treatment.  相似文献   
924.
Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9 sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9 sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9 sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9 sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9 sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate.  相似文献   
925.
Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or MSC transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. In the present study, we aimed to develop an approach in MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, the protective effects of our approach were investigated by using ex vivo aortic ring coculture system and a 3D scaffolds in vivo model. Results of this investigation demonstrated that HSP promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by cis-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. These observations support a hypothesis that VEGFA expression induced by cis-RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects of stem cell gene therapy. The use of an inducible system also vastly reduces possible clinical risks associated with constitutive VEGFA expression.  相似文献   
926.
927.
928.
γ‐Bisabolene, one of main components in cardamom, showed potent in vitro and in vivo anti‐proliferative activities against human oral squamous cell carcinoma (OSCC). γ‐Bisabolene activated caspases‐3/9 and decreased mitochondrial memebrane potential, leading to apoptosis of OSCC cell lines (Ca9‐22 and SAS), but not normal oral fibroblast cells. Phosphoproteome profiling of OSCC cells treated with γ‐bisabolene was identified using TiO2‐PDMS plate and LC‐MS/MS, then confirmed using Western blotting and real‐time RT‐PCR assays. Phosphoproteome profiling revealed that γ‐bisabolene increased the phosphorylation of ERK1/2, protein phosphatases 1 (PP1), and p53, as well as decreased the phosphorylation of histone deacetylase 2 (HDAC2) in the process of apoptosis induction. Protein–protein interaction network analysis proposed the involvement of PP1‐HDAC2‐p53 and ERK1/2‐p53 pathways in γ‐bisabolene‐induced apoptosis. Subsequent assays indicated γ‐bisabolene eliciting p53 acetylation that enhanced the expression of p53‐regulated apoptotic genes. PP1 inhibitor‐2 restored the status of HDAC2 phosphorylation, reducing p53 acetylation and PUMA mRNA expression in γ‐bisabolene‐treated Ca9‐22 and SAS cells. Meanwhile, MEK and ERK inhibitors significantly decreased γ‐bisabolene‐induced PUMA expression in both cancer cell lines. Notably, the results ascertained the involvement of PP1‐HDAC2‐p53 and ERK1/2‐p53 pathways in mitochondria‐mediated apoptosis of γ‐bisabolene‐treated cells. This study demonstrated γ‐bisabolene displaying potent anti‐proliferative and apoptosis‐inducing activities against OSCC in vitro and in vivo, elucidating molecular mechanisms of γ‐bisabolene‐induced apoptosis. The novel insight could be useful for developing anti‐cancer drugs.  相似文献   
929.
Ischemic and oxidative damage to the hypothalamus may be associated with decreased heat tolerance as well as heatstroke formation. The present study explores the hypothalamic proteome mechanisms associated with heatstroke‐mediated hypothalamic ischemia, and oxidative damage. Heatstroke rats had hypotension, hypothalamic ischemia, and lethality. In addition, they had hyperthermia and hypothalamic blood–brain–barrier disruption, oxidative stress, activated inflammation, and neuronal apoptosis and degeneration. 2DE combined LC‐MS/MS revealed that heatstroke‐induced ischemic injury and apoptosis were associated with upregulation of L‐lactate dehydrogenase but downregulation of both dihydropyriminase‐related protein and 14‐3‐3 Zeta isoform protein. Heat‐induced blood–brain–barrier disruption might be related to upregulation of glial fibrillary acidic protein. Oxidative stress caused by heatstroke might be related to upregulation of cytosolic dehydrogenase‐1. Also, heat‐induced overproduction of proinflammatory cytokines might be associated with downregulation of stathmin 1. Heat‐induced hypothalamic ischemia, apoptosis, injury (or upregulation of L‐lactate dehydrogenase), blood–brain–barrier disruption (or upregulation of glial fibrillary acidic protein), oxidative stress (or upregulation of cytosolic dehydrogenase‐1), and activated inflammation (or downregulation of stathmin 1) were all significantly reversed by whole body cooling. Our data indicate that cooling therapy improves outcomes of heatstroke by modulating hypothalamic proteome mechanisms.  相似文献   
930.
Chromokinesins are microtubule plus end-directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号