首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78891篇
  免费   6540篇
  国内免费   4873篇
  90304篇
  2024年   138篇
  2023年   901篇
  2022年   2075篇
  2021年   3602篇
  2020年   2326篇
  2019年   2838篇
  2018年   2869篇
  2017年   2029篇
  2016年   2872篇
  2015年   4585篇
  2014年   5295篇
  2013年   5964篇
  2012年   6898篇
  2011年   6357篇
  2010年   3818篇
  2009年   3375篇
  2008年   4117篇
  2007年   3654篇
  2006年   3179篇
  2005年   2683篇
  2004年   2281篇
  2003年   1975篇
  2002年   1732篇
  2001年   1559篇
  2000年   1565篇
  1999年   1447篇
  1998年   848篇
  1997年   797篇
  1996年   809篇
  1995年   737篇
  1994年   687篇
  1993年   530篇
  1992年   819篇
  1991年   657篇
  1990年   602篇
  1989年   531篇
  1988年   421篇
  1987年   363篇
  1986年   336篇
  1985年   300篇
  1984年   221篇
  1983年   199篇
  1982年   112篇
  1981年   118篇
  1980年   86篇
  1979年   147篇
  1978年   84篇
  1977年   95篇
  1975年   111篇
  1974年   116篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Jian-Kang Chen 《Autophagy》2013,9(6):923-924
The mammalian homolog of yeast Vps34 (PIK3C3/VPS34) is implicated in the regulation of autophagy, and recent studies have suggested that autophagy is a key mechanism in maintaining the integrity of renal glomerular podocytes. To date, however, the role of PIK3C3 in podocytes has remained unknown. We generated a line of podocyte-specific Pik3c3-knockout (Pik3c3pdKO/mVps34pdKO) mice and demonstrated an indispensable role for PIK3C3 in the regulation of intracellular vesicle trafficking and processing to protect the normal cellular metabolism, structure and function of podocytes.  相似文献   
992.
Human cancer genomes are highly complex, making it challenging to identify specific drivers of cancer growth, progression, and tumor maintenance. To bypass this obstacle, we have applied array comparative genomic hybridization (array CGH) to zebrafish embryonal rhabdomyosaroma (ERMS) and utilized cross-species comparison to rapidly identify genomic copy number aberrations and novel candidate oncogenes in human disease. Zebrafish ERMS contain small, focal regions of low-copy amplification. These same regions were commonly amplified in human disease. For example, 16 of 19 chromosomal gains identified in zebrafish ERMS also exhibited focal, low-copy gains in human disease. Genes found in amplified genomic regions were assessed for functional roles in promoting continued tumor growth in human and zebrafish ERMS – identifying critical genes associated with tumor maintenance. Knockdown studies identified important roles for Cyclin D2 (CCND2), Homeobox Protein C6 (HOXC6) and PlexinA1 (PLXNA1) in human ERMS cell proliferation. PLXNA1 knockdown also enhanced differentiation, reduced migration, and altered anchorage-independent growth. By contrast, chemical inhibition of vascular endothelial growth factor (VEGF) signaling reduced angiogenesis and tumor size in ERMS-bearing zebrafish. Importantly, VEGFA expression correlated with poor clinical outcome in patients with ERMS, implicating inhibitors of the VEGF pathway as a promising therapy for improving patient survival. Our results demonstrate the utility of array CGH and cross-species comparisons to identify candidate oncogenes essential for the pathogenesis of human cancer.  相似文献   
993.
Histone deacetylases (HDACs) are important class of enzymes that deacetylate the ε-amino group of the lysine residues in the histone tails to form a closed chromatin configuration resulting in the regulation of gene expression. Inhibition of these HDACs enzymes have been identified as one of the promising approaches for cancer treatment. The type-specific inhibition of class I HDAC enzymes is known to elicit improved therapeutic effects and thus, the search for promising type-specific HDAC inhibitors compounds remains an ongoing research interest in cancer drug discovery. Several different strategies are employed to identify the features that could identify the isoform specificity factors in these HDAC enzymes. This study combines the insilico docking and energy-optimized pharmacophore (e-pharmacophore) mapping of several known HDACi's to identify the structural variants that are significant for the interactions against each of the four class I HDAC enzymes. Our hybrid approach shows that all the inhibitors with at least one aromatic ring in their linker regions hold higher affinities against the target enzymes, while those without any aromatic rings remain as poor binders. We hypothesize the e-pharmacophore models for the HDACi's against all the four Class I HDAC enzymes which are not reported elsewhere. The results from this work will be useful in the rational design and virtual screening of more isoform specific HDACi's against the class I HDAC family of proteins.  相似文献   
994.
Silica nanoparticles are increasingly used in the biomedical fields due to their excellent solubility, high stability and favorable biocompatibility. However, despite being considered of low genotoxicity, their bio-related adverse effects have attracted particular concern from both the scientific field and the public. In this study, human cervical adenocarcinoma cells (HeLa line) were exposed to 0.01 or 1.0 mg/mL of hydrophilic silica nanoparticles. The 1H NMR spectroscopy coupled with multivariate statistical analysis were used to characterize the metabolic variations of intracellular metabolites and the compositional changes of the corresponding culture media. At the early stage of silica nanoparticles-exposure, no obvious dose–effect of HeLa cell metabolome was observed, which implied that cellular stress-response regulated the metabolic variations of HeLa cell. Silica nanoparticles induced the increases of lipids including triglyceride, LDL, VLDL and lactate/alanine ratio and the decreases of alanine, ATP, choline, creatine, glycine, glycerol, isoleucine, leucine, phenylalanine, tyrosine, and valine, which involved in membrane modification, catabolism of carbohydrate and protein, and stress-response. Subsequently, a complicated synergistic effect of stress-response and toxicological-effect dominated the biochemical process and metabolic response, which was demonstrated in the reverse changes of some metabolites including acetate, ADP, ATP, choline, creatine, glutamine, glycine, lysine, methionine, phenylalanine and valine between 6 and 48 h post-treatment of silica nanoparticles. The toxicological-effects induced by high-dosage silica nanoparticles could be derived from the elevated levels of ATP and ADP, the utilization of glucose and amino acids and the production of metabolic end-products such as glutamate, glycine, lysine, methionine, phenylalanine, and valine. The results indicated that it is important and necessary to pursue further the physiological responses of silica nanoparticles in animal models and human before their practical use. NMR-based metabolomic analysis helps to understand the biological mechanisms of silica nanoparticles and their metabolic fate, and further, it offers an ideal platform for establishing the bio-safety of existing and new nanomaterials.  相似文献   
995.
The plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of bacterial blight, which is one of the most serious diseases of rice. Xoo has been studied for over one century, and much has been learned about it, but proteomic investigation has been neglected. In this study, proteome reference maps of Xoo were constructed by two-dimensional gel electrophoresis, and 628 spots in the gels representing 469 different protein species were identified with MALDI-TOF/TOF MS. The identified spots were assigned to 15 functional categories according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the annotations from the National Center for Biotechnology Information (NCBI) database. The data set has been deposited in the World-2DPAGE database (Database ID: 0044). In addition, comparative proteomic analysis revealed that proteins related to the TonB-dependent transportation system and energy metabolism are involved in the phenazine-1-carboxylic acid resistance in Xoo. In conclusion, we have established a proteome database for Xoo and have used this database in a comparative proteomic analysis that identified proteins potentially contributing to phenazine-1-carboxylic acid resistance in Xoo.  相似文献   
996.
997.
Chemical investigation of the aqueous extract of the aerial portion of Sibiraea angustata led to the isolation of eight new monoterpene acylglucosides named sibiraglucoside A–H (1–8) and two known monoterpenes, sibiraic acid (9) and sibiskoside (10). Their structures were elucidated through extensive spectroscopic data analysis (including 1D and 2D NMR and HRESIMS experiments) and compared to literature data. In the in vitro bioassay, all of the compounds showed moderate hypolipidemic effects.  相似文献   
998.
Two new flavonoids, fistulaflavonoids B and C (1–2), together with five known flavonoids (3–7) were isolated from the bark and stems of Cassia fistula. Their structures were determined by means of HRESIMS, extensive 1D and 2D NMR spectroscopic studies and chemical evidences. The anti-tobacco mosaic virus (anti-TMV) activity of the isolated flavonoids was also evaluated. The results showed that compounds 1 and 2 showed high anti-TMV activity with inhibition rate of 28.5% and 31.3%, which is higher than that of Ningnanmycin (24.7%). Compounds 4–7 showed modest anti-TMV activity with inhibition rate of 18.5%, 22.7%, 16.4%, and 15.3%, respectively.  相似文献   
999.
A novel C6–C3 prenylated compound, illicarborene A (1), together with illioliganfunone D (2), 1-allyl-3,5-dimethoxy-4-(3-methylbut-2-enyloxy)benzene (3), (?)-illicinone A (4), (?)-illicinone B (5) and (?)-illicinone A derivative (6) was isolated and characterized from the fruits of Illicium arborescens Hayata. Compound 1 possesses a new class of tricyclic 6/6/5 ring system. The structure of 1 was determined by spectroscopic analysis such as 1H–1H COSY, HMQC, HMBC, and NOESY, and confirmed by chemical reaction to yield 7. Compounds 15 were found to increase proliferative activity in primary cell culture of osteoblast cells.  相似文献   
1000.
Air pollution is a risk factor for respiratory infections, and one of its main components is particulate matter (PM), which is comprised of a number of particles that contain iron, such as coal fly ash (CFA). Since free iron concentrations are extremely low in airway surface liquid (ASL), we hypothesize that CFA impairs antimicrobial peptides (AMP) function and can be a source of iron to bacteria. We tested this hypothesis in vivo by instilling mice with Pseudomonas aeruginosa (PA01) and CFA and determine the percentage of bacterial clearance. In addition, we tested bacterial clearance in cell culture by exposing primary human airway epithelial cells to PA01 and CFA and determining the AMP activity and bacterial growth in vitro. We report that CFA is a bioavailable source of iron for bacteria. We show that CFA interferes with bacterial clearance in vivo and in primary human airway epithelial cultures. Also, we demonstrate that CFA inhibits AMP activity in vitro, which we propose as a mechanism of our cell culture and in vivo results. Furthermore, PA01 uses CFA as an iron source with a direct correlation between CFA iron dissolution and bacterial growth. CFA concentrations used are very relevant to human daily exposures, thus posing a potential public health risk for susceptible subjects. Although CFA provides a source of bioavailable iron for bacteria, not all CFA particles have the same biological effects, and their propensity for iron dissolution is an important factor. CFA impairs lung innate immune mechanisms of bacterial clearance, specifically AMP activity. We expect that identifying the PM mechanisms of respiratory infections will translate into public health policies aimed at controlling, not only concentration of PM exposure, but physicochemical characteristics that will potentially cause respiratory infections in susceptible individuals and populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号