首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3868篇
  免费   383篇
  国内免费   269篇
  2024年   6篇
  2023年   29篇
  2022年   64篇
  2021年   150篇
  2020年   100篇
  2019年   149篇
  2018年   146篇
  2017年   121篇
  2016年   164篇
  2015年   265篇
  2014年   277篇
  2013年   296篇
  2012年   372篇
  2011年   323篇
  2010年   217篇
  2009年   190篇
  2008年   233篇
  2007年   205篇
  2006年   163篇
  2005年   138篇
  2004年   139篇
  2003年   127篇
  2002年   117篇
  2001年   66篇
  2000年   52篇
  1999年   55篇
  1998年   28篇
  1997年   25篇
  1996年   26篇
  1995年   16篇
  1994年   24篇
  1993年   21篇
  1992年   23篇
  1991年   14篇
  1990年   17篇
  1989年   9篇
  1988年   14篇
  1987年   10篇
  1986年   16篇
  1985年   6篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   7篇
  1976年   8篇
  1975年   11篇
  1974年   9篇
排序方式: 共有4520条查询结果,搜索用时 31 毫秒
71.
Long non-coding RNA (lncRNA) plays an important role in the renal inflammatory response caused by hyperuricaemia. However, the underlying molecular mechanisms through which lncRNA is involved in endothelial injury induced by hyperuricaemia remain unclear. In this study, we investigated the regulatory role of lncRNA-HOTAIR in high concentration of uric acid (HUA)–induced renal injury. We established hyperuricaemia mouse model and an in vitro uric acid (UA)–induced human umbilical vein endothelial cell (HUVEC) injury model. In HUA-treated HUVECs and hyperuricaemia mice, we observed increased HOTAIR and decreased miR-22 expression. The expression of pyroptosis-associated protein (NLRP3, Caspase-1, GSDMD-N, GSDMD-FL) was increased. The release of LDH, IL-1β and IL-18 in cell supernatants and the sera of model mice was also increased. The proliferation of HUVECs stimulated by HUA was significantly inhibited, and the number of TUNEL-positive cells in hyperuricaemia mouse kidney was increased. Bioinformatics analysis and luciferase reporter and RIP assays confirmed that HOTAIR promoted NLRP3 inflammasome activation by competitively binding miR-22. In gain- or loss-of-function experiments, we found that HOTAIR and NLRP3 overexpression or miR-22 knock down activated the NLRP3 inflammasome and promoted pyroptosis in HUA-treated HUVECs, while NLRP3 and HOTAIR knockdown or a miR-22 mimic exerted the opposite effects. Furthermore, in vivo experiments validated that HOTAIR knockdown alleviated renal inflammation in hyperuricaemia mice. In conclusion, we demonstrated that in hyperuricaemia, lncRNA-HOTAIR promotes endothelial cell pyroptosis by competitively binding miR-22 to regulate NLRP3 expression.  相似文献   
72.
Plasmonics - Developing a simple structure using low-cost material that enables both large-scale fabrication and broadband absorption response is highly desirable but very challenging for achieving...  相似文献   
73.
The IGF system is one of the most important endocrine and paracrine growth factor systems that regulate fetal and placental growth, whereas the liver is the principal source of circulation IGF-I. In the present study, expression of IGF-I, IGF type-I receptor (IGF-IR), and IGF binding protein (IGFBP)-3 genes was quantified by RT-PCR in the liver tissue on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days post-hatching (PH) in meat-type Gaoyou ducks and egg-type Jinding ducks. The results showed that IGF-I mRNA could be detected as early as on E 13d, but the expression level was low throughout embryonic development before increasing dramatically by E 27d and 7 days PH in both duck breeds. However, Gaoyou ducks exhibited higher IGF-I mRNA level than Jinding ducks, and the differences were significant on E 13d, E 21d, and at 7 days PH. Expression of IGF-IR in liver increased gradually in the former stages of the embryonic development, reaching its highest point on E 21d, and then declined up until 7 days PH. The expression pattern of IGFBP-3 gene was similar to that of IGF-IR gene, increasing significantly from E 17d. The expression peak appeared on E 25d, then declined significantly just prior to hatching (day 27) and was followed by an increase at 7 days PH. In general, the expression level of IGF-IR and IGFBP-3 genes in Jinding ducks was higher than that in Gaoyou ducks. Inverse relationships were observed for the expression of IGF-I and IGF-IR, and IGF-I and IGFBP-3, whereas a positive relationship was observed for the expression of IGF-IR and IGFBP-3. Our data indicate a differential expression of selected genes that comprise the IGF system in the duck liver tissue during embryonic and early PH growth and development.  相似文献   
74.
Despite the advancement of cardiac imaging technologies, these have traditionally been limited to global geometrical measurements. Computational fluid dynamics (CFD) has emerged as a reliable tool that provides flow ?eld information and other variables essential for the assessment of the cardiac function. Extensive studies have shown that vortex formation and propagation during the filling phase acts as a promising indicator for the diagnosis of the cardiac health condition. Proper setting of the boundary conditions is crucial in a CFD study as they are important determinants, that affect the simulation results. In this article, the effect of different transmitral velocity profiles (parabolic and uniform profile) on the vortex formation patterns during diastole was studied in a ventricle with dilated cardiomyopathy (DCM). The resulting vortex evolution pattern using the uniform inlet velocity profile agreed with that reported in the literature, which revealed an increase in thrombus risk in a ventricle with DCM. However the application of a parabolic velocity profile at the inlet yields a deviated vortical flow pattern and overestimates the propagation velocity of the vortex ring towards the apex of the ventricle. This study highlighted that uniform inlet velocity profile should be applied in the study of the filling dynamics in a left ventricle because it produces results closer to that observed experimentally.  相似文献   
75.
When an γ‐irradiated Dy‐, Tm‐, Sm‐ or Mn‐doped CaSO4 crystal is impulsively deformed, two peaks appear in the ML intensity versus time curve, whereby the first ML peak is found in the deformation region and the second in the post‐deformation region of the crystals. In this study, intensities Im1 and Im2 corresponding to first and second ML peaks, respectively, increased linearly with an impact velocity v0 of the piston used to deform the crystals, and times tm1 and tm2 corresponding to the first and second ML peaks, respectively, decreased with impact velocity. Total ML intensity initially increased with impact velocity and then reached a saturation value for higher values of impact velocity. ML intensity increased with increasing γ‐doses and size of crystals. Results showed that the electric field produced as a result of charging of newly‐created surfaces caused tunneling of electrons to the valence band of the hole‐trapping centres. The free holes generated moved in the valence band and their subsequent recombination with electron trapping centres released energy, thereby resulting in excitation of luminescent centres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
76.
Abstract

Adenosine and guanosine analogs with 8-position vinyl and aryl groups were prepared by palladium catalyzed cross-coupling of organostannanes with 8-bromopurine nucleosides. The reaction conditions and catalyst composition were improved so that both vinyl and aryl modifications could be made by a general procedure.  相似文献   
77.
Background: Colorectal carcinogenesis is believed to be a multi-stage process that originates with a localized adenoma, which linearly progresses to an intra-mucosal carcinoma, to an invasive lesion, and finally to metastatic cancer. This progression model is supported by tissue culture and animal model studies, but it is difficult to reconcile with several well-established observations, principally among these are that up to 25% of early stage (Stage I/II), node-negative colorectal cancer (CRC) develop distant metastasis, and that circulating CRC cells are undetectable in peripheral blood samples of up to 50% of patients with confirmed metastasis, but more than 30% of patients with no detectable metastasis exhibit such cells. The mechanism responsible for this diverse behavior is unknown, and there are no effective means to identify patients with pending, or who are at high risk for, developing metastatic CRC.Novel findings: Our previous studies of human breast and prostate cancer have shown that cancer invasion arises from the convergence of a tissue injury, the innate immune response to that injury, and the presence of tumor stem cells within tumor capsules at the site of the injury. Focal degeneration of a capsule due to age or disease attracts lymphocyte infiltration that degrades the degenerating capsules resulting in the formation of a focal disruption in the capsule, which selectively favors proliferating or “budding” of the underlying tumor stem cells. Our recent studies suggest that lymphocyte infiltration also triggers metastasis by disrupting the intercellular junctions and surface adhesion molecules within the proliferating cell buds causing their dissociation. Then, lymphocytes and tumor cells are conjoined through membrane fusion to form tumor-lymphocyte chimeras (TLCs) that allows the tumor stem cell to avail itself of the lymphocyte''s natural ability to migrate and breach cell barriers in order to intravasate and to travel to distant organs. Our most recent studies of human CRC have detected nearly identical focal capsule disruptions, lymphocyte infiltration, budding cells, and the formation of TLCs. Our studies have further shown that age- and type-matched node-positive and -negative CRC have a significantly different morphological and immunohistochemical profile and that the majority of lymphatic ducts with disseminated cells are located within the mucosa adjacent to morphologically normal appearing epithelial structures that express a stem cell-related marker.New hypothesis: Based on these findings and the growth patterns of budding cells revealed by double immunohistochemistry, we further hypothesize that metastatic spread is an early event of carcinogenesis and that budding cells overlying focal capsule disruptions represent invasion- and metastasis-initiating cells that follow one of four pathways to progress: (1) to undergo extensive in situ proliferation leading to the formation of tumor nests that subsequently invade the submucosa, (2) to migrate with associated lymphocytes functioning as “seeds” to grow in new sites, (3) to migrate and intravasate into pre-existing vascular structures by forming TLCs, or (4) to intravasate into vascular structures that are generated by the budding cells themselves. We also propose that only node-positive cases harbor stem cells with the potential for multi-lineage differentiation and unique surface markers that permit intravasation.  相似文献   
78.
Background aimsToll-like receptors (TLRs) play an important role in innate and adaptive immunity by recognizing pathogen-associated molecular patterns (PAMPs).MethodsIn the present study, we investigated the expression and role of TLRs on human umbilical cord mesenchymal stromal cells (UC-MSCs). The proliferation, differentiation and immunoregulatory activity of UC-MSCs primed with or without TLR ligands were determined.ResultsAt the RNA level, the expression of TLR2, 4, 6 and 9 was relatively higher than that of other TLRs. However, TLR3 and TLR4 expression were relatively higher at the protein level. UC-MSCs expressed functional TLRs by nuclear factor-κB activation and cytokine expression assay. Poly-inosinic acid:cytidylic acid [Poly(I:C)] stimulation inhibited the proliferation of UC-MSCs, but the ligand of other TLRs had no significant effect. Poly(I:C) stimulation enhanced the adipogenic differentiation capability of UC-MSCs, but lipopolysaccharide inhibited the adipogenic differentiation. Poly(I:C) and CpG-oligonucleotide promoted the immunosuppressive potentiality of UC-MSCs, accompanied with the phosphorylation of interferon regulatory factor 3 (IRF3) and increased expression of indoleamine 2,3-dioxygenase and interferon β, whereas activation of other TLR ligands (synthetic analog fibroblast-stimulating lipopeptide-1 and lipopolysaccharide) failed to affect the immunoregulatory activity of UC-MSCs.ConclusionsTaken together, our data demonstrated that TLR activation influenced the function of UC-MSCs, which might have important implications in future efforts to explore the clinical potentials of UC-MSCs.  相似文献   
79.
Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the 1H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender.  相似文献   
80.

Objectives

This is a cross-sectional study aimed at investigating cognitive performances in patients with primary lateral sclerosis (PLS) and using diffusion tensor (DT) magnetic resonance imaging (MRI) to determine the topographical distribution of microstructural white matter (WM) damage in patients with or without cognitive deficits.

Methods

DT MRI scans were obtained from 21 PLS patients and 35 age- and sex-matched healthy controls. All PLS patients underwent a comprehensive neuropsychological battery. Tract-based-spatial-statistics (TBSS) was used to perform a whole-brain voxel-wise analysis of fractional anisotropy (FA), axial, radial (radD) and mean diffusivity (MD).

Results

Ten PLS patients had abnormal scores in at least one neuropsychological test (PLS with cognitive deficits, PLS-cd). Compared with healthy controls and cognitively unimpaired PLS patients (PLS-cu), PLS-cd cases showed decreased FA and increased MD and radD in the corticospinal tract (CST), corpus callosum, brainstem, anterior limb of internal capsule, superior and inferior longitudinal fasciculi, fornix, thalamic radiations, and parietal lobes, bilaterally. Compared with healthy controls, PLS-cd patients showed further decreased FA and increased radD in the cerebellar WM, bilaterally. Compared with controls, PLS-cu patients showed decreased FA in the mid-body of corpus callosum. In PLS, executive and language test scores correlated with WM damage.

Conclusions

This is the first study evaluating the relationship between cognitive performance and WM tract damage in PLS patients. PLS can be associated with a multi-domain cognitive impairment. WM damage to interhemispheric, limbic and major associative WM tracts seem to be the structural correlate of cognitive abnormalities in these patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号