首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   13篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   7篇
  2016年   7篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   11篇
  2000年   12篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   4篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1966年   1篇
排序方式: 共有123条查询结果,搜索用时 468 毫秒
81.
The present paper contains a detailed overview of recent advances relating to polyaniline (PANI) as a transducer material for biosensor applications. This conducting polymer provides enormous opportunities for binding biomolecules, tuning their bio-catalytic properties, rapid electron transfer and direct communication to produce a range of analytical signals and new analytical applications. Merging the specific nature of different biomolecules (enzymes, nucleic acids, antibodies, etc.) and the key properties of this modern conducting matrix, possible biosensor designs and their biosensing characteristics have been discussed. Efforts have been made to discuss and explore various characteristics of PANI responsible for direct electron transfer leading towards fabrication of mediator-less biosensors.  相似文献   
82.
HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapR(V2)) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapR(V2) to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapR(V2) (HapR(V2G)), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapR(V2) and HapR(V2G) proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a "Y" shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.  相似文献   
83.
84.
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.  相似文献   
85.
86.

Background

Atherosclerotic plaque rupture is the culprit event which underpins most acute vascular syndromes such as acute myocardial infarction. Novel biomarkers of plaque rupture could improve biological understanding and clinical management of patients presenting with possible acute vascular syndromes but such biomarker(s) remain elusive. Investigation of biomarkers in the context of de novo plaque rupture in humans is confounded by the inability to attribute the plaque rupture as the source of biomarker release, as plaque ruptures are typically associated with prompt down-stream events of myocardial necrosis and systemic inflammation.

Methods

We developed a novel approach to identify potential biomarkers of plaque rupture by integrating plaque imaging, using optical coherence tomography, with both plaque and plasma proteomic analysis in a human model of angioplasty-induced plaque disruption.

Results

We compared two pairs of coronary plaque debris, captured by a FilterWire Device, and their corresponding control samples and found matrix metalloproteinase 9 (MMP9) to be significantly enriched in plaque. Plaque contents, as defined by optical coherence tomography, affect the systemic changes of MMP9. Disruption of lipid-rich plaque led to prompt elevation of plasma MMP9, whereas disruption of non-lipid-rich plaque resulted in delayed elevation of plasma MMP9. Systemic MMP9 elevation is independent of the associated myocardial necrosis and systemic inflammation (measured by Troponin I and C-reactive protein, respectively). This information guided the selection of a subset of subjects of for further label free proteomics analysis by liquid chromatography tandem mass spectrometry (LC–MS/MS). We discovered five novel, plaque-enriched proteins (lipopolysaccharide binding protein, Annexin A5, eukaryotic translocation initiation factor, syntaxin 11, cytochrome B5 reductase 3) to be significantly elevated in systemic circulation at 5 min after plaque disruption.

Conclusion

This novel approach for biomarker discovery in human coronary artery plaque disruption can identify new biomarkers related to human coronary artery plaque composition and disruption.
  相似文献   
87.
Certain Trichoderma species are causing serious losses in mushroom production worldwide. Trichoderma aggressivum and Trichoderma pleuroti are among the major causal agents of the green mould diseases affecting Agaricus bisporus and Pleurotus ostreatus, respectively. The genus Trichoderma is well‐known for the production of bioactive secondary metabolites, including peptaibols, which are short, linear peptides containing unusual amino acid residues and being synthesised via non‐ribosomal peptide synthetases (NRPSs). The aim of this study was to get more insight into the peptaibol production of T. aggressivum and T. pleuroti. HPLC/MS‐based methods revealed the production of peptaibols closely related to hypomurocins B by T. aggressivum, while tripleurins representing a new group of 18‐residue peptaibols were identified in T. pleuroti. Putative NRPS genes enabling the biosynthesis of the detected peptaibols could be found in the genomes of both Trichoderma species. In vitro experiments revealed that peptaibols are potential growth inhibitors of mushroom mycelia, and that the host mushrooms may have an influence on the peptaibol profiles of green mould agents.  相似文献   
88.
Smac, a second mitochondria-derived activator of caspases, promotes caspase activation in the cytochrome c (cyto-c)/Apaf-1/caspase-9 pathway. Here, we show that treatment of multiple myeloma (MM) cells with dexamethasone (Dex) triggers the release of Smac from mitochondria to cytosol and activates caspase-9 without concurrent release of cyto-c and Apaf-1 oligomerization. Smac binds to XIAP (an inhibitor of apoptosis protein) and thereby, at least in part, eliminates its inhibitory effect on caspase-9. Interleukin-6, a growth factor for MM, blocks Dex-induced apoptosis and prevents release of Smac. Taken together, these findings demonstrate that Smac plays a functional role in mediating Dex-induced caspase-9 activation and apoptosis in MM cells.  相似文献   
89.
Activation of the initiator caspase-9 is essential for induction of apoptosis by developmental signals, oncogenic transformation, and genotoxic stress. The c-Abl tyrosine kinase is also involved in the apoptotic response to DNA damage. The present results demonstrate that c-Abl binds directly to caspase-9. We show that c-Abl phosphorylates caspase-9 on Tyr-153 in vitro and in cells treated with DNA damaging agents. Moreover, inhibition of c-Abl with STI571 blocked DNA damage-induced autoprocessing of caspase-9 to the p35 subunit and activation of caspase-3. Caspase-9(Y153F) also attenuated DNA damage-induced processing of caspase-9 to p35, activation of caspase-3, and apoptosis. These findings indicate that caspase-9 autoprocessing is regulated by c-Abl in the apoptotic response to genotoxic stress.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号