首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
31.
Autism is one of the five disorders that falls under the umbrella of Pervasive Developmental Disorders (PDD) or Autism Spectrum Disorder (ASD), a category of neurological disorders characterized by "severe and pervasive impairment in several areas of development." ASD is characterized by varying degrees of impairment in communication skills, social interaction and restricted, repetitive stereotyped patterns of behavior. The five disorders under PDD are autistic disorder, Asperger's disorder, childhood disintegrative disorder, Rett's disorder and PDD-not otherwise specified. ASD can often be reliably detected by the age of 3 years and, in some cases, as early as 18 months. The appearance of any warning signs of ASD is reason to have the child evaluated by a professional specializing in these disorders.  相似文献   
32.
Applied Microbiology and Biotechnology - Probiotic industries strive for new, efficient and promising probiotic strains that impart a positive impact on consumer health. Challenges are persisting...  相似文献   
33.
Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinson's disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced alterations in the indices of oxidative stress in rat PMNs. Animals were treated with or without MB and/or PQ in an exposure time dependent manner. In some sets of experiments, the animals were pre-treated with NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) along with respective controls. A significant increase in myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide, iNOS expression and lipid peroxidation (LPO) was observed in PMNs of MB- and/or PQ-treated animals, while catalase and glutathione S-transferase (GST) activities were attenuated. L-NAME and AG significantly reduced the augmented nitrite content, iNOS expression and MPO activity to control level in MB and PQ exposed animals. Although the augmented LPO was also reduced significantly in L-NAME and AG treated rat PMNs, the level was still higher as compared with controls. Alterations induced in SOD and GST activities were not affected by NOS inhibitors. The results thus suggest that MB and/or PQ induce iNOS-mediated nitric oxide production, which in turn increases MPO activity and lipid peroxidation, thereby oxidative stress.  相似文献   
34.
Four major phenolics were demonstrated to be produced by Pseudomonas fluorescens strain CRb-26, a cotton rhizobacterium antagonistic to Xanthomonas camprestris pv. malvacearum (Xcm), the inducer of bacterial blight of cotton. Of these, compounds II (nonfluorescent) and IV(fluorescent) completely inhibited the growth of Xcm in vitro. Among these, compound IV was produced maximally (39% of the four phenolics), and it protected cotton leaves from blight infection better than compound II under glass-house conditions. Compound IV, identified as 2,4-diacetylphloroglucinol, was, therefore, concluded to be a key metabolite involved in disease suppression by strain CRb-26 of P. fluorescens, which could be used as an ecofriendly potential input in the integrated management of bacterial blight of cotton. Received: 27 February 2001 / Accepted: 22 March 2001  相似文献   
35.
Two metabolites have been isolated from Aspergillus niger AN27, a biocontrol agent, and identified as 2-carboxymethyl 3-n-hexyl maleic acid (compound 1) and 2-methylene-3-hexylbutanedioic acid (compound 2). Their biological activities related to crop growth promotion have been assayed. Both the compounds increased germination and improved crop vigour. Compound 1 was more effective for increase in germination and shoot length, whereas compound 2 had relatively greater role in increasing the root length and biomass of cauliflower seedlings.  相似文献   
36.
The present paper contains a detailed overview of recent advances relating to polyaniline (PANI) as a transducer material for biosensor applications. This conducting polymer provides enormous opportunities for binding biomolecules, tuning their bio-catalytic properties, rapid electron transfer and direct communication to produce a range of analytical signals and new analytical applications. Merging the specific nature of different biomolecules (enzymes, nucleic acids, antibodies, etc.) and the key properties of this modern conducting matrix, possible biosensor designs and their biosensing characteristics have been discussed. Efforts have been made to discuss and explore various characteristics of PANI responsible for direct electron transfer leading towards fabrication of mediator-less biosensors.  相似文献   
37.
HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapR(V2)) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapR(V2) to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapR(V2) (HapR(V2G)), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapR(V2) and HapR(V2G) proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a "Y" shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.  相似文献   
38.
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.  相似文献   
39.
Certain Trichoderma species are causing serious losses in mushroom production worldwide. Trichoderma aggressivum and Trichoderma pleuroti are among the major causal agents of the green mould diseases affecting Agaricus bisporus and Pleurotus ostreatus, respectively. The genus Trichoderma is well‐known for the production of bioactive secondary metabolites, including peptaibols, which are short, linear peptides containing unusual amino acid residues and being synthesised via non‐ribosomal peptide synthetases (NRPSs). The aim of this study was to get more insight into the peptaibol production of T. aggressivum and T. pleuroti. HPLC/MS‐based methods revealed the production of peptaibols closely related to hypomurocins B by T. aggressivum, while tripleurins representing a new group of 18‐residue peptaibols were identified in T. pleuroti. Putative NRPS genes enabling the biosynthesis of the detected peptaibols could be found in the genomes of both Trichoderma species. In vitro experiments revealed that peptaibols are potential growth inhibitors of mushroom mycelia, and that the host mushrooms may have an influence on the peptaibol profiles of green mould agents.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号