首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   94篇
  688篇
  2022年   6篇
  2021年   11篇
  2019年   10篇
  2018年   6篇
  2017年   10篇
  2016年   11篇
  2015年   17篇
  2014年   17篇
  2013年   20篇
  2012年   25篇
  2011年   23篇
  2010年   19篇
  2009年   22篇
  2008年   26篇
  2007年   21篇
  2006年   21篇
  2005年   19篇
  2004年   28篇
  2003年   15篇
  2002年   21篇
  2001年   14篇
  2000年   14篇
  1999年   16篇
  1998年   9篇
  1997年   9篇
  1996年   6篇
  1995年   6篇
  1992年   12篇
  1991年   9篇
  1990年   11篇
  1989年   16篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   10篇
  1983年   8篇
  1982年   8篇
  1981年   8篇
  1979年   13篇
  1978年   7篇
  1977年   10篇
  1975年   10篇
  1973年   8篇
  1972年   12篇
  1971年   10篇
  1970年   9篇
  1969年   10篇
  1968年   10篇
  1967年   6篇
  1966年   6篇
排序方式: 共有688条查询结果,搜索用时 0 毫秒
121.
122.
123.
Replication stress often induces chromosome instability. In this study, we explore which factors in replication-compromised cells promote abnormal chromosome ploidy. We expressed mutant forms of either polymerase α (Polα) or polymerase δ (Polδ) in normal human fibroblasts to compromise DNA replication. Cells expressing the mutant Polα-protein failed to sustain mitotic arrest and, when propagated progressively, down-regulated Mad2 and BubR1 and accumulated 4N-DNA from the 2N-DNA cells. Significantly, a population of these cells became tetraploids. The Polα mutant expressing cells also exhibited elevated cellular senescence markers, suggesting as a mechanism to limit proliferation of the tetraploids. Expression of the Polδ mutant also caused cells to accumulate 4N-DNA. In contrast to the Polα mutant expressing cells, the Polδ mutant expressing cells expressed sufficient levels of Mad2, BubR1, and cyclin B1 to sustain mitotic arrest, and these cells had normal chromosome ploidy. Together, these results suggest that replication-compromised cells depend on the mitotic checkpoint to prevent mitotic slippage that could result in tetraploidization.  相似文献   
124.
Saccharomyces cerevisiae is used to provide fundamental understanding of eukaryotic genetics, gene product function, and cellular biological processes. Saccharomyces Genome Database (SGD) has been supporting the yeast research community since 1993, serving as its de facto hub. Over the years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation, and developed various tools and methods for analysis and curation of a variety of emerging data types. More recently, SGD and six other model organism focused knowledgebases have come together to create the Alliance of Genome Resources to develop sustainable genome information resources that promote and support the use of various model organisms to understand the genetic and genomic bases of human biology and disease. Here we describe recent activities at SGD, including the latest reference genome annotation update, the development of a curation system for mutant alleles, and new pages addressing homology across model organisms as well as the use of yeast to study human disease.  相似文献   
125.
Exogenously applied GABA modulates root growth by inhibition of root elongation when seedlings were grown in vitro on full-strength Murashige and Skoog (MS) salts, but root elongation was stimulated when seedlings were grown on 1/8 strength MS salts. When the concentration of single ions in MS salts was individually varied, the control of growth between inhibition and stimulation was found to be related to the level of nitrate (NO3?) in the growth medium. At NO3? concentrations below 40 mM (full-strength MS salts level), root growth was stimulated by the addition of GABA to the growth medium; whereas at concentrations above 40 mM NO3?, the addition of GABA to the growth medium inhibited root elongation. GABA promoted NO3? uptake at low NO3?, while GABA inhibited NO3? uptake at high NO3?. Activities of several enzymes involved in nitrogen and carbon metabolism including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and phosphoenol pyruvate carboxylase (PEPCase) were regulated by GABA in the growth medium. Supplementing 1/8 strength MS medium with 50 mM GABA enhanced the activities of all of the above enzymes except ICDH activities in root tissues. However, at full-strength MS, GABA showed no inhibitory effect on the activities of these enzymes, except on GS in both root and shoot tissues, and PEPCase activity in shoot tissues. Exogenous GABA increased the amount of NR protein rather than its activation status in the tissues. This study shows that GABA affects the growth of Arabidopsis, possibly by acting as a signaling molecule, modulating the activity of enzymes involved in primary nitrogen metabolism and nitrate uptake.  相似文献   
126.
The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV), an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism.  相似文献   
127.
Mutations in the COL3A1 gene that encodes the chains of type III procollagen result in the vascular form of Ehlers-Danlos syndrome (EDS), EDS type IV, if they alter the sequence in the triple-helical domain. Although other fibrillar collagen-gene mutations that lead to allele instability or failure to incorporate proalpha-chains into trimers-and that thus reduce the amount of mature molecules produced-result in clinically apparent phenotypes, no such mutations have been identified in COL3A1. Furthermore, mice heterozygous for Col3a1 "null" alleles have no identified phenotype. We have now found three frameshift mutations (1832delAA, 413delC, and 555delT) that lead to premature termination codons (PTCs) in exons 27, 6, and 9, respectively, and to allele-product instability. The mRNA from each mutant allele was transcribed efficiently but rapidly degraded, presumably by the mechanisms of nonsense-mediated decay. In a fourth patient, we identified a point mutation, in the final exon, that resulted in a PTC (4294C-->T [Arg1432Ter]). In this last instance, the mRNA was stable but led to synthesis of a truncated protein that was not incorporated into mature type III procollagen molecules. In all probands, the presenting feature was vascular aneurysm or rupture. Thus, in contrast to mutations in genes that encode the dominant protein of a tissue (e.g., COL1A1 and COL2A1), in which "null" mutations result in phenotypes milder than those caused by mutations that alter protein sequence, the phenotypes produced by these mutations in COL3A1 overlap with those of the vascular form of EDS. This suggests that the major effect of many of these dominant mutations in the "minor" collagen genes may be expressed through protein deficiency rather than through incorporation of structurally altered molecules into fibrils.  相似文献   
128.
A population of band 3 proteins in the human erythrocyte membrane is known to have restricted rotational mobility due to interaction with cytoskeletal proteins. We have further investigated the cause of this restriction by measuring the effects on band 3 rotational mobility of rebinding ankyrin and band 4.1 to ghosts stripped of these proteins as well as spectrin and actin. Rebinding either ankyrin or 4.1 alone has no detectable effect on band 3 mobility. Rebinding both these proteins together does, however, reimpose a restriction on band 3 rotation. The effect on band 3 rotational mobility of rebinding ankyrin and 4.1 are similar irrespective of whether or not band 4.2 is removed from the membrane. We suggest that ankyrin and 4.1 together promote the formation of slowly rotating clusters of band 3.  相似文献   
129.
Cherry JL 《Genetics》2004,166(2):1105-1114
In a subdivided population, the interaction between natural selection and stochastic change in allele frequency is affected by the occurrence of local extinction and subsequent recolonization. The relative importance of selection can be diminished by this additional source of stochastic change in allele frequency. Results are presented for subdivided populations with extinction and recolonization where there is more than one founding allele after extinction, where these may tend to come from the same source deme, where the number of founding alleles is variable or the founders make unequal contributions, and where there is dominance for fitness or local frequency dependence. The behavior of a selected allele in a subdivided population is in all these situations approximately the same as that of an allele with different selection parameters in an unstructured population with a different size. The magnitude of the quantity N(e)s(e), which determines fixation probability in the case of genic selection, is always decreased by extinction and recolonization, so that deleterious alleles are more likely to fix and advantageous alleles less likely to do so. The importance of dominance or frequency dependence is also altered by extinction and recolonization. Computer simulations confirm that the theoretical predictions of both fixation probabilities and mean times to fixation are good approximations.  相似文献   
130.
In the past several years, there has been a tremendous effort to construct physical maps and to sequence the genome of Arabidopsis thaliana. As a result, four of the five chromosomes are completely covered by overlapping clones except at the centromeric and nucleolus organizer regions (NOR). In addition, over 30% of the genome has been sequenced and completion is anticipated by the end of the year 2000. Despite these accomplishments, the physical maps are provided in many formats on laboratories' Web sites. These data are thus difficult to obtain in a coherent manner for researchers. To alleviate this problem, AtDB (Arabidopsis thaliana DataBase, URL: http://genome-www.stanford.edu/Arabidopsis/) has constructed a unified display of the physical maps where all publicly available physical-map data for all chromosomes are presented through the Web in a clickable, 'on-the-fly' graphic, created by CGI programs that directly consult our relational database.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号