首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   30篇
  国内免费   3篇
  368篇
  2021年   6篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   8篇
  2016年   15篇
  2015年   11篇
  2014年   13篇
  2013年   32篇
  2012年   15篇
  2011年   27篇
  2010年   26篇
  2009年   14篇
  2008年   19篇
  2007年   16篇
  2006年   7篇
  2005年   14篇
  2004年   14篇
  2003年   9篇
  2002年   6篇
  2001年   12篇
  2000年   7篇
  1999年   10篇
  1998年   10篇
  1997年   9篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1975年   6篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有368条查询结果,搜索用时 0 毫秒
111.
Using transfer DNA (T-DNA) with functions of gene trap and gene knockout and activation tagging, a mutant population containing 55,000 lines was generated. Approximately 81% of this population carries 1–2 T-DNA copies per line, and the retrotransposon Tos17 was mostly inactive in this population during tissue culture. A total of 11,992 flanking sequence tags (FSTs) have been obtained and assigned to the rice genome. T-DNA was preferentially (∼80%) integrated into genic regions. A total of 19,000 FSTs pooled from this and another T-DNA tagged population were analyzed and compared with 18,000 FSTs from a Tos17 tagged population. There was difference in preference for integrations into genic, coding, and flanking regions, as well as repetitive sequences and centromeric regions, between T-DNA and Tos17; however, T-DNA integration was more evenly distributed in the rice genome than Tos17. Our T-DNA contains an enhancer octamer next to the left border, expression of genes within genetics distances of 12.5 kb was enhanced. For example, the normal height of a severe dwarf mutant, with its gibberellin 2-oxidase (GA2ox) gene being activated by T-DNA, was restored upon GA treatment, indicating GA2ox was one of the key enzymes regulating the endogenous level of GA. Our T-DNA also contains a promoterless GUS gene next to the right border. GUS activity screening facilitated identification of genes responsive to various stresses and those regulated temporally and spatially in large scale with high frequency. Our mutant population offers a highly valuable resource for high throughput rice functional analyses using both forward and reverse genetic approaches. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users. Yue-Ie Hsing, Chyr-Guan Chern, and Ming-Jen Fan have contributed equally.  相似文献   
112.

Background

The photorespiratory nitrogen cycle in C3 plants involves an extensive diversion of carbon and nitrogen away from the direct pathways of assimilation. The liberated ammonia is re-assimilated, but up to 25% of the carbon may be released into the atmosphere as CO2. Because of the loss of CO2 and high energy costs, there has been considerable interest in attempts to decrease the flux through the cycle in C3 plants. Transgenic tobacco plants were generated that contained the genes gcl and hyi from E. coli encoding glyoxylate carboligase (EC 4.1.1.47) and hydroxypyruvate isomerase (EC 5.3.1.22) respectively, targeted to the peroxisomes. It was presumed that the two enzymes could work together and compete with the aminotransferases that convert glyoxylate to glycine, thus avoiding ammonia production in the photorespiratory nitrogen cycle.

Results

When grown in ambient air, but not in elevated CO2, the transgenic tobacco lines had a distinctive phenotype of necrotic lesions on the leaves. Three of the six lines chosen for a detailed study contained single copies of the gcl gene, two contained single copies of both the gcl and hyi genes and one line contained multiple copies of both gcl and hyi genes. The gcl protein was detected in the five transgenic lines containing single copies of the gcl gene but hyi protein was not detected in any of the transgenic lines. The content of soluble amino acids including glycine and serine, was generally increased in the transgenic lines growing in air, when compared to the wild type. The content of soluble sugars, glucose, fructose and sucrose in the shoot was decreased in transgenic lines growing in air, consistent with decreased carbon assimilation.

Conclusions

Tobacco plants have been generated that produce bacterial glyoxylate carboligase but not hydroxypyruvate isomerase. The transgenic plants exhibit a stress response when exposed to air, suggesting that some glyoxylate is diverted away from conversion to glycine in a deleterious short-circuit of the photorespiratory nitrogen cycle. This diversion in metabolism gave rise to increased concentrations of amino acids, in particular glutamine and asparagine in the leaves and a decrease of soluble sugars.  相似文献   
113.
Increasing evidence indicates that microglial activation plays an important role in the pathogenesis of Alzheimer's disease (AD). In AD, activated microglia may facilitate the clearance of β-amyloid (Aβ), a neurotoxic component in AD pathogenesis. However, microglial activation comes at the cost of triggering neuro-inflammation, which contributes to cerebral dysfunction. Thus, pharmacological approaches that can achieve a favorable combination of a reduced microglia-mediated neuro-inflammation, and an enhanced Aβ clearance may be beneficial for preventing the progression of the disease. Here, we show that some newly synthesized compounds may exert such a combination of functions. Using mouse primary microglia and RAW264.7 cells, we found that some thiourea derivatives significantly enhanced microglial Aβ phagocytosis and suppressed microglial immune responses, as evidenced by the reduced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Of note, some commercially available inhibitors for iNOS and/or COX-2, such as ibuprofen, dextromethorphan, and NG-methyl-l-arginine (l-NMA), show negligible effects on microglial Aβ phagocytosis. Among the thiourea derivatives, our data show that a lead compound, designated as compound #326, (1-Naphthalen-1-yl-3-[5-(3-thioureido-phenoxy)-pentyl]-thiourea) appears to be the most potent in promoting Aβ phagocytosis and in inhibiting the LPS-induced expression of iNOS and COX-2 (when used at concentrations in the low μM range). The potency of compound #326 may have beneficial effects on modulating microglial activation in AD. The structure–activity relationship indicates that the thiourea group, alkyl linker, and the hydrophobic aryl group largely influence the dual functions of the compounds. These findings may indicate a structural basis for the improved design of future drug therapies for AD.  相似文献   
114.
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by expended CAG repeats in the Huntingtin (Htt) gene. The resultant mutant Htt (mHtt) forms aggregates in neurons and causes neuronal dysfunctions. The major characteristic of HD is the selective loss of neurons in the striatum and cortex, which leads to movement disorders, dementia, and eventual death. Expression of mHtt was also found in non-neuronal cells in the brain, suggesting non-cell-autonomous neurotoxicity in HD. As was documented in many different neurodegenerative disorders, elevated inflammatory responses are also reported in HD. To date, effective treatments for this devastating disease remain to be developed. This review focuses on the importance of glial cells and inflammation in HD pathogenesis. Potential anti-inflammatory interventions for HD are also discussed.  相似文献   
115.
116.
The Arabidopsis NPR1/NIM1 gene is a key regulator of systemic acquired resistance (SAR). Over-expression of NPR1 leads to enhanced resistance in Arabidopsis. To investigate the role of NPR1 in monocots, we over-expressed the Arabidopsis NPR1 in rice and challenged the transgenic plants with Xanthomonas oryzae pv. oryzae (Xoo), the rice bacterial blight pathogen. The transgenic plants displayed enhanced resistance to Xoo. RNA blot hybridization indicates that enhanced resistance requires expression of NPR1 mRNA above a threshold level in rice. To identify components mediating the resistance controlled by NPR1, we used NPR1 as bait in a yeast two-hybrid screen. We isolated four cDNA clones encoding rice NPR1 interactors (named rTGA2.1, rTGA2.2, rTGA2.3 and rLG2) belonging to the bZIP family. rTGA2.1, rTGA2.2 and rTGA2.3 share 75, 76 and 78% identity with Arabidopsis TGA2, respectively. In contrast, rLG2 shares highest identity (81%) to the maize liguleless (LG2) gene product, which is involved in establishing the leaf blade-sheath boundary. The interaction of NPR1 with the rice bZIP proteins in yeast was impaired by the npr1-1 and npr1-2 mutations, but not by the nim1-4 mutation. The NPR1-rTGA2.1 interaction was confirmed by an in vitro pull-down experiment. In gel mobility shift assays, rTGA2.1 binds to the rice RCH10 promoter and to a cis-element required sequence-specifically for salicylic acid responsiveness. This is the first demonstration that the Arabidopsis NPR1 gene can enhance disease resistance in a monocot plant. These results also suggest that monocot and dicot plants share a conserved signal transduction pathway controlling NPR1-mediated resistance.  相似文献   
117.
118.

Background  

Hyaluronic acid (HA) is present in many tissues; its presence in serum may be related to certain inflammatory conditions, tissue damage, sepsis, liver malfunction and some malignancies. In the present work, our goal was to investigate the significance of hyaluronic acid effect on erythrocyte flow properties. Therefore we performed in vitro experiments incubating red blood cells (RBCs) with several HA concentrations. Afterwards, in order to corroborate the pathophysiological significance of the results obtained, we replicated the in vitro experiment with ex vivo RBCs from diagnosed rheumatoid arthritis (RA) patients, a serum HA-increasing pathology.  相似文献   
119.
We report a molecular cytogenetic characterization of 17p13.3 deletion syndrome by array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH) and quantitative polymerase chain reaction (qPCR) in a fetus with lissencephaly, corpus callosum dysgenesis, ventriculomegaly, microcephaly, intrauterine growth restriction (IUGR), polyhydramnios and single umbilical artery. aCGH analysis revealed a 3.17-Mb deletion at 17p13.3, or arr [hg19] 17p13.3 (0–3,165,530)×1. The qPCR assays revealed a maternal origin of the deletion. Metaphase FISH analysis detected the absence of the LIS1 probe signal on the aberrant chromosome 17. The karyotype was 46,XX,del(17)(p13.3). We review the literature of chromosome 17p13.3 deletion syndrome with prenatal findings and diagnosis, and suggest that prenatal ultrasound detection of central nervous system anomalies such as lissencephaly, corpus callosum dysgenesis/agenesis, ventriculomegaly and microcephaly associated with IUGR, polyhydramnios, congenital heart defects, abdominal wall defects and renal abnormalities should include a differential diagnosis of chromosome 17p13.3 deletion syndrome.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号