首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   8篇
  国内免费   2篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   4篇
  2015年   7篇
  2014年   12篇
  2013年   4篇
  2012年   14篇
  2011年   15篇
  2010年   7篇
  2009年   13篇
  2008年   10篇
  2007年   5篇
  2006年   7篇
  2005年   11篇
  2004年   3篇
  2003年   12篇
  2002年   3篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   7篇
  1991年   4篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   5篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1966年   2篇
  1965年   1篇
排序方式: 共有251条查询结果,搜索用时 765 毫秒
81.
To understand the reported cross-reactivity of the 2009 H1N1 and the 1918 H1N1 pandemic viruses we docked the crystal structure of 2D1, an antibody derived from a survivor of the 1918 pandemic, to the structures of hemaglutinin (HA) of the 2009 strain and seasonal H1 vaccine strains. Our studies revealed that 2D1 binds to the 2009 HA at antigenic site 'Sa', with stabilizing contacts, similar to that in an available co-crystal structure of 2D1-1918 HA. However, 2D1 failed to bind to the known antigenic sites in the HAs of seasonal strains. Our study thus reveals the molecular basis for pre-existing immunity in elderly people to the 2009 pandemic virus.  相似文献   
82.
Antigenic drift and shift involving the surface proteins of Influenza virus gave rise to new strains that caused epidemics affecting millions of people worldwide over the last hundred years. Variations in the membrane proteins like Hemagglutinin (HA) and Neuraminidase (NA) necessitates new vaccine strains to be updated frequently and poses challenge to effective vaccine design. Though the HA protein, the primary target of the human immune system, has been well studied, reports on the antigenic variability in the other membrane protein NA are sparse. In this paper we investigate the molecular basis of antigenic drift in the NA protein of the Influenza A/H3N2 vaccine strains between 1968 and 2009 and proceed to establish correlation between antigenic drift and antigen-antibody interactions. Sequence alignments and phylogenetic analyses were carried out and the antigenic variability was evaluated in terms of antigenic distance. To study the effects of antigenic drift on the protein structures, 3D structure of NA from various strains were predicted. Also, rigid body docking protocol has been used to study the interactions between these NA proteins and antibody Mem5, a 1998 antibody.  相似文献   
83.
84.
The effect of feeding different amounts of n-6 and n-3 fatty acids (FA) to hens on immune tissue FA composition and leukotriene production of hatched chicks was investigated. Hens were fed diets supplemented with either 3.0% sunflower oil (Diet I), 1.5% sunflower+1.5% fish oil (Diet II), or 3.0% fish oil (Diet III) for 46 days. The hatched chicks were fed a diet containing C18:3n-3, but devoid of longer chain n-6 and n-3 FA, for 21 days. Spleen docosahexaenoic acid (DHA) content was higher in chicks from hens fed Diet III (P<0.05). The bursa content of arachidonic acid was lower in chicks hatched from hens fed Diet III (P<0.05), and the ratio of n-6 to n-3 FA was significantly higher in bursa of chicks hatched to hens fed Diet I (P<0.05). Eicosapentaenoic acid (EPA) and DHA contents were higher in bursa of chicks hatched from hens fed Diet III (P<0.05). Thrombocytes from chicks hatched to hens fed Diet III produced the most leukotriene B(5) (LTB(5)). The ratio of LTB(5) to LTB(4) concentrations was also highest (P<0.05) in chicks hatched to hens fed Diet III. These results indicate that modulating maternal dietary n-6 and n-3 FA may alter leukotriene production in chicks, which could lead to less inflammatory-related disorders in poultry.  相似文献   
85.
Bacterial DNA topoisomerases are essential for bacterial growth and are attractive, important targets for developing antibacterial drugs. Consequently, different potent inhibitors that target bacterial topoisomerases have been developed. However, the development of potent broad-spectrum inhibitors against both Gram-positive (G+) and Gram-negative (G) bacteria has proven challenging. In this study, we carried out biophysical studies to better understand the molecular interactions between a potent bis-pyridylurea inhibitor and the active domains of the E-subunits of topoisomerase IV (ParE) from a G+ strain (Streptococcus pneumoniae (sParE)) and a G strain (Pseudomonas aeruginosa (pParE)). NMR results demonstrated that the inhibitor forms a tight complex with ParEs and the resulting complexes adopt structural conformations similar to those observed for free ParEs in solution. Further chemical-shift perturbation experiments and NOE analyses indicated that there are four regions in ParE that are important for inhibitor binding, namely, α2, the loop between β2 and α3, and the β2 and β6 strands. Surface plasmon resonance showed that this inhibitor binds to sParE with a higher KD than pParE. Point mutations in α2 of ParE, such as A52S (sParE), affected its binding affinity with the inhibitor. Taken together, these results provide a better understanding of the development of broad-spectrum antibacterial agents.  相似文献   
86.
Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin–Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization.  相似文献   
87.
In a climate of growing concern that Plasmodium falciparum may be developing a drug resistance to artemisinin derivatives in the Guiana Shield, this review details our current knowledge of malaria and control strategy in one part of the Shield, French Guiana. Local epidemiology, test-treat-track strategy, the state of parasite drug resistance and vector control measures are summarised. Current issues in terms of mobile populations and legislative limitations are also discussed.  相似文献   
88.
In this paper, a coupled bioluminescent assay, relying on the coupling of the enzymes acetylcholinesterase, S‐acetyl‐coenzyme A synthetase and firefly luciferase, for the detection and quantitation of organophosphorus pesticides, is presented. Using malathion as a model organophosphorus pesticide, the assay was optimized through statistical experimental design methodology, namely Plackett–Burman and central composite designs. The optimized method requires only 20 μL of sample. The linear range for the assay was 2.5–15 μM of malathion, with limits of detection and quantitation of 1.5 and 5.0 μM, respectively. This simple, fast and robust method allows samples to be analyzed at room temperature and without any pretreatment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
89.
Snake venoms are cocktails comprising combinations of different proteins, peptides, enzymes and toxins. Snake toxins have diverse characteristics having different molecular configuration, structure and mode of action. Many toxins derived from snake venom have distinct pharmacological activities. Venom from Bungarus fasciatus (commonly known as banded krait) is a species of elapid snake found on the South East Asia and Indian sub-continent, mainly contains neurotoxins. Beta bungartotoxin is the major fraction of Bungarus venom and particularly act pre-synaptically by obstructing neurotransmitter release. This toxin in other snake species functionally forms a heterodimer containing two different subunits (A and B). Dimerization of these two chains is a pre-requisite for the proper functionality of this protein. However, B. fasciatus bungartotoxin contains only B chain and their structural orientation in yet to be resolved. Therefore, it is of interest to describe the predicted structure model of the toxin for functional insights. In this work we analyzed the neurotoxic nature, their alignments, secondary and three dimensional structures, functions, active sites and stability with the help of different bioinformatical tools. A comprehensive analysis of the predicted model provides approaching to the functional interpretation of its molecular action.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号