首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   46篇
  423篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   11篇
  2015年   26篇
  2014年   15篇
  2013年   19篇
  2012年   34篇
  2011年   25篇
  2010年   18篇
  2009年   18篇
  2008年   23篇
  2007年   25篇
  2006年   22篇
  2005年   20篇
  2004年   18篇
  2003年   17篇
  2002年   17篇
  2001年   12篇
  2000年   16篇
  1999年   10篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1992年   8篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
排序方式: 共有423条查询结果,搜索用时 15 毫秒
31.
With PCR products as probes, we have cloned two new cry-type genes from Bacillus thuringiensis subsp. wuhanensis. The deduced amino acid sequence of the first clone is 77.3% identical to Cry1Ga1. The deduced protein sequence of the second clone is 69.8–78.7% identical to that of Cry1B group. The nomenclature assignment of these two clones is, therefore, named Cry1Gb1 and Cry1Bd1, respectively. The Cry1Bd1 is toxic to Plutella xylostella larvae, and the Cry1Gb1 is toxic to Pieris rapae larvae. Received: 2 August 1999 / Accepted: 18 October 1999  相似文献   
32.
The N-terminal, posttranslational arginylation of proteins is ubiquitous in eukaryotic cells. Previous experiments, using purified components of the reaction incubated in the presence of exogenous substrates, have shown that only those proteins containing acidic residues at their N-terminals are arginylation substrates. However, data from experiments that used crude extracts of brain and nerve as the source of the arginylating molecules, suggest that the in vivo targets for arginylation are more complex than those demonstrated using purified components. One of the proposed functions for arginylation is as a signal for protein degradation and proteins that have undergone oxidative damage have been shown to be rapidly degraded. In the present experiments we have tested the hypothesis that the presence of an oxidatively damaged residue in a protein is a signal for its arginylation. These experiments have been performed by adding synthetic oxidized peptides to crude extracts of rat brain, incubating them with [3H]Arg and ATP and assaying for arginylated peptides using RP-HPLC. Results showed that while the oxidized A-chain of insulin was arginylated in this system, confirming previous experiments, other peptides containing oxidized residues were not. When a peptide containing Glu in the N-terminus was incubated under the same conditions it too was not a substrate for arginylation. These findings show that neither the presence of an N-terminal acidic residue nor an oxidized residue alone are sufficient to signal arginylation. Thus, another feature of the oxidized A-chain of insulin is required for arginylation. That feature remains to be identified.  相似文献   
33.
A major impediment to understanding the biological roles of inorganic polyphosphate (polyP) has been the lack of sensitive definitive methods to extract and quantitate cellular polyP. We show that polyP recovered in extracts from cells lysed with guanidinium isothiocynate can be bound to silicate glass and quantitatively measured by a two-enzyme assay: polyP is first converted to ATP by polyP kinase, and the ATP is hydrolyzed by luciferase to generate light. This nonradioactive method can detect picomolar amounts of phosphate residues in polyP per milligram of extracted protein. A simplified procedure for preparing polyP synthesized by polyP kinase is also described. Using the new assay, we found that bacteria subjected to nutritional or osmotic stress in a rich medium or to nitrogen exhaustion had large and dynamic accumulations of polyP. By contrast, carbon exhaustion, changes in pH, temperature upshifts, and oxidative stress had no effect on polyP levels. Analysis of Escherichia coli mutants revealed that polyP accumulation depends on several regulatory genes, glnD (NtrC), rpoS, relA, and phoB.  相似文献   
34.
BACKGROUND: Nitric oxide (NO) is cytostatic for proliferating cells, inhibits microbial growth, and down-regulates the synthesis of specific proteins. Studies were undertaken to determine the mechanism by which NO inhibits total protein synthesis and whether the inhibition correlates with established cytostatic activities of NO. MATERIALS AND METHODS: In in vitro experiments, various cell types were exposed to NO using either donors or expression of inducible NO synthase (iNOS). The capacity of NO to suppress total protein synthesis, measured by incorporation of 35S-methionine into protein, was correlated with the capacity of NO to suppress cell proliferation, viral replication, or iNOS expression. Phosphorylation of eIF-2 alpha was examined as a possible mechanism for the suppressed protein synthesis by NO. RESULTS: Both NO donors and expression of the iNOS suppressed total protein synthesis in L929 cells and A2008 human ovarian tumor cells in parallel with decreased cell proliferation. Suppressed protein synthesis was also shown to correlate with decreased vaccinia virus proliferation in murine peritoneal macrophages in an iNOS-dependent manner. Furthermore, iNOS expression in pancreatic islets or RAW264.7 cells almost completely inhibited total protein synthesis, suggesting that nonspecific inhibition of protein synthesis may be the mechanism by which NO inhibited the synthesis of specific proteins such as insulin or iNOS itself. This possibility was confirmed in RAW264.7 cells where the inhibition of total protein synthesis correlated with the decreased iNOS protein. The decrease in protein levels occurred without changes in iNOS mRNA levels, implicating an inhibition of translation. Mechanistic studies revealed that iNOS expression in RAW264.7 cells resulted in the phosphorylation of eIF-2 alpha and inhibition of the 80S ribosomal complex formation. CONCLUSIONS: These results suggest that NO suppresses protein synthesis by stimulating the phosphorylation of eIF-2 alpha. Furthermore, our observations indicate that nonspecific inhibition of protein synthesis may be a generalized response of cells exposed to high levels of NO and that inhibition of protein synthesis may contribute to many of the described cytostatic actions of NO.  相似文献   
35.
Microglia, the CNS resident macrophages responsible for the clearance of degenerating cellular fragments, are essential to tissue remodeling and repair after CNS injury. ATP can be released in large amounts after CNS injury and may mediate microglial activity through the ionotropic P2X and the metabotropic P2Y receptors. This study indicates that exposure to a high concentration of ATP for 30 min rapidly induces changes of the microglial cytoskeleton, and significantly attenuates microglial phagocytosis. A pharmacological approach showed that ATP-induced inhibition of microglial phagocytotic activity was due to P2X7R activation, rather than that of P2YR. Activation of P2X7R by its agonist, 2'-3'- O -(4-benzoyl)benzoyl-ATP (BzATP), produced a Ca2+-independent reduction in microglial phagocytotic activity. In addition, the knockdown of P2X7R expression by lentiviral-mediated shRNA interference or the blockade of P2X7R activation by the specific antagonists, oxidized ATP (oxATP) and brilliant blue G, has efficiently restored the phagocytotic activity of ATP and BzATP-treated microglia. Our results reveal that P2X7R activation may induce the formation of a Ca2+-independent signaling complex, which results in the reduction of microglial phagocytosis. This suggests that exposure to ATP for a short-term period may cause insufficient clearance of tissue debris by microglia through P2X7R activation after CNS injury, and that blockade of this receptor may preserve the phagocytosis of microglia and facilitate CNS tissue repair.  相似文献   
36.
37.
38.
Hepatitis C virus (HCV) infection is a main cause of chronic liver disease, leading to liver cirrhosis and hepatocellular carcinoma (HCC). The objective of our research was to develop effective agents against viral replication. Here, we have synthesized a series of anilinoquinoline derivatives. Based on a cell-based HCV replicon system, we observed that 2-(3'-nitroanilino)quinoline (18) exhibited anti-HCV activity with a 50% effective concentration (EC(50)) value of 7μM and a selective index (SI) value of 10. In addition, compound 18 possessed the inhibitory effect on HCV NS3/4A protease activity. Therefore, we concluded that the compound 18 possessed a potent activity against HCV replication and could provide as a new lead compound as anti-HCV inhibitor.  相似文献   
39.
Synthesis and anti-inflammatory effects of certain furo[3′,2′:3,4]naphtho[1,2-d]imidazole derivatives 1218 were studied. These compounds were synthesized from naphtho[1,2-b]furan-4,5-dione (10) which in turn was prepared from the known 2-hydoxy-1,4-naphthoquinone (7) in a one pot reaction. Furo[3′,2′:3,4]naphtho[1,2-d]imidazole (12) was inactive (IC50 value of >30 μM) while its 5-phenyl derivative 13, with an IC50 value of 16.3 and 11.4 μM against lysozyme and β-glucuronidase release, respectively, was comparable to the positive trifluoperazine. The same potency was observed for 5-furan derivative 16 with an IC50 value of 19.5 and 11.3 μM against lysozyme and β-glucuronidase release, respectively. An electron-withdrawing NO2 substituted on 5-phenyl or 5-furanyl group led to the devoid of activity as in the cases of 14 and 17. Among them, compound 15 exhibited significant inhibitory effects, with an IC50 value of 7.4 and 5.0 μM against lysozyme and β-glucuronidase release, respectively.For the LPS-induced NO production, the phenyl derivatives 12–15 were inactive while the nitrofuran counterparts 17 and 18 suppress LPS-induced NO production significantly, with an IC50 value of 1.5 and 1.3 μM, respectively, which are more active than that of the positive 1400 W. Compounds 16–18 were capable of inhibiting LPS-induced iNOS protein expression at a dose-dependent manner in which compound 18, with an IC50 of 0.52 μM in the inhibition of iNOS expression, is approximately fivefold more potent than that of the positive 1400 W. In the CLP rat animal model, compound 18 was found to be more active than the positive hydrocortisone in the inhibition of the iNOS mRNA expression in rat lung tissue. The sepsis-induced PGE2 production in rat serum decreased 150% by the pretreatment of 18 in a dose of 10 mg/kg.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号