首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   7篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   7篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   11篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  1999年   1篇
  1995年   2篇
  1976年   1篇
  1967年   1篇
  1933年   1篇
排序方式: 共有73条查询结果,搜索用时 484 毫秒
51.
The effects of climate (precipitation and temperature) on sexual dimorphism and population structure were analysed along a broad-scale environmental gradient covering the distributional range of the endemic dioecious species Corema album, along the west coast of the Iberian Peninsula. We aimed to assess distribution constraints and sex-related differences in demography and size associated with higher reproductive investment in females. Nine populations were chosen from across the geographic range of C. album and ten 10 × 10 m plots were established (10 m apart) along a 200-m transect. All male, female and non-reproductive shrubs were quantified within each plot and plant size, photosynthetic layer, height, sex ratio, population density and structure, and spatial segregation of sexes, under environmental conditions ranging from temperate to Mediterranean climate, were recorded and analysed. Increased aridity was related to lower population density and less structured populations, indicating an effect of higher temperature and lower precipitation on regeneration. Sexual dimorphism was influenced by climate, with size differences between sexes varying with aridity. However, demographic differences between sexes reflected in sex ratio deviations or the occurrence of spatial segregation were unrelated to any climatic variable, suggesting the existence of compensatory mechanisms that may counterbalance the higher reproductive effort of female plants. The results show the vulnerability of this endemic species to the increase in aridity expected in the southernmost limit of the biogeographical area due to global climate change, and demonstrate the importance of broad scale studies in the assessment of sexual dimorphism.  相似文献   
52.

Background

The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol–gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation.

Results

The two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8–9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants.

Conclusions

The behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFβ1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis.
  相似文献   
53.
Of great interest in developing artificial bone is the incorporation of magnesium (Mg) ions into the ceramic lattice in order to improve the physico-chemical and structural properties of the material and to increase its morphological affinity towards newly formed osseous tissue. In the present study, we evaluated the morphological and biological properties of composite scaffolds fabricated by mixing a nanopowder of Mg-substituted beta-tricalcium phosphate with collagen type I in two dry weight ratios (variant I and II). We used biochemical methods, and electron and light microscopy to investigate their porosity, biodegradability and morphology. Osteoblast cell culture behavior in the presence of nanocomposite variants was also examined. Variant I scaffold presented a higher percentage of cross-links and a better resistance to collagenase degradation compared to variant II scaffold. Their porosity did not vary significantly. Osteoblasts cultivated in the presence of nanocomposite scaffolds for 72 h exhibited good cell viability and a normal morphology. When osteoblasts were injected into the scaffolds, a slightly higher proportion of adhered cells were observed for Mg-substituted samples after 7 days of cultivation. All these results showed that Mg-containing porous composite scaffolds had controlled degradation, allowed osteoblast proliferation and adhesion and are good candidates for bone repair.  相似文献   
54.
Phagosomal biogenesis is central for microbial killing and antigen presentation by leukocytes. However, the molecular mechanisms governing phagosome maturation are poorly understood. We analyzed the role and site of action of phosphatidylinositol 3-kinases (PI3K) and of Rab GTPases in maturation using both professional and engineered phagocytes. Rab5, which is recruited rapidly and transiently to the phagosome, was found to be essential for the recruitment of Rab7 and for progression to phagolysosomes. Similarly, functional PI3K is required for successful maturation. Remarkably, inhibition of PI3K did not preclude Rab5 recruitment to phagosomes but instead enhanced and prolonged it. Moreover, in the presence of PI3K inhibitors Rab5 was found to be active, as deduced from measurements of early endosome antigen 1 binding and by photobleaching recovery determinations. Though their ability to fuse with late endosomes and lysosomes was virtually eliminated by wortmannin, phagosomes nevertheless recruited a sizable amount of Rab7. Moreover, Rab7 recruited to phagosomes in the presence of PI3K antagonists retained the ability to bind its effector, Rab7-interacting lysosomal protein, suggesting that it is functionally active. These findings imply that (i) dissociation of Rab5 from phagosomes requires products of PI3K, (ii) PI3K-dependent effectors of Rab5 are not essential for the recruitment of Rab7 by phagosomes, and (iii) recruitment and activation of Rab7 are insufficient to induce fusion of phagosomes with late endosomes and lysosomes. Accordingly, transfection of constitutively active Rab7 did not bypass the block of phagolysosome formation exerted by wortmannin. We propose that Rab5 activates both PI3K-dependent and PI3K-independent effectors that act in parallel to promote phagosome maturation.  相似文献   
55.
56.

Background

The urgent need for cheap and easy-to-use protection against both unwanted pregnancies and sexually transmitted diseases has stimulated considerable interest in the use of surfactants as microbicides, anti-viral, and contraceptive agents in recent years. In the present study we report a systematic in vitro evaluation of the microbicidal, anti-viral and contraceptive potential of cationic, anionic, zwitterionic, and non-ionic surfactants.

Methodology/Principal Findings

Toxicity was evaluated in mammalian columnar epithelial (MDCK) cells, human sperm cells, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Streptococcus agalactiae and Enterococcus faecalis. The inhibition of adenovirus and lentivirus infection of MDCK cells was also tested. A homologous series of cationic surfactants, alkyl-N,N,N-trimethylammonium bromides (CnTAB), with varying alkyl chains were shown to be bactericidal and fungicidal at doses that were related to the surfactant critical micelle concentrations (CMC), all of them at concentrations significantly below the CMC. In general, bacteria were more susceptible to this surfactant group than C. albicans and this organism, in turn, was more susceptible than MDCK cells. This suggests that the CnTAB may be useful as vaginal disinfectants only in so far as bacterial and fungal infections are concerned. None of the surfactants examined, including those that have been used in pre-clinical studies, showed inhibition of adenovirus or lentivirus infection of MDCK cells or spermicidal activity at doses that were sub-toxic to MDCK cells.

Conclusions/Significance

The results of this study lead us to propose that systematic analysis of surfactant toxicity, such as we report in the present work, be made a mandatory pre-condition for the use of these substances in pre-clinical animal and/or human studies.  相似文献   
57.
58.
The photosystem two (PSII) complex found in oxygenic photosynthetic organisms is susceptible to damage by UV-B irradiation and undergoes repair in vivo to maintain activity. Until now there has been little information on the identity of the enzymes involved in repair. In the present study we have investigated the involvement of the FtsH and Deg protease families in the degradation of UV-B-damaged PSII reaction center subunits, D1 and D2, in the cyanobacterium Synechocystis 6803. PSII activity in a ΔFtsH (slr0228) strain, with an inactivated slr0228 gene, showed increased sensitivity to UV-B radiation and impaired recovery of activity in visible light after UV-B exposure. In contrast, in ΔDeg-G cells, in which all the three deg genes were inactivated, the damage and recovery kinetics were the same as in the WT. Immunoblotting showed that the loss of both the D1 and D2 proteins was retarded in ΔFtsH (slr0228) during UV-B exposure, and the extent of their restoration during the recovery period was decreased relative to the WT. However, in the ΔDeg-G cells the damage and recovery kinetics of D1 and D2 were the same as in the WT. These data demonstrate a key role of FtsH (slr0228), but not the Deg proteases, for the repair of PS II during and following UV-B radiation at the step of degrading both of the UV-B damaged D1 and D2 reaction center subunits.  相似文献   
59.
60.
Development of new therapies for glioblastoma requires animal models that mimic the biological characteristics of human brain tumors. On the other hand, potential antitumoral effects of a new therapeutic strategy are often established by evaluation of tumor cells apoptosis. Caspases are key mediators in the regulation and execution of apoptosis. Caspase-9 is activated during the intrinsic pathway downstream of mitochondria while caspase-3 is an effector caspase that initiates degradation of the cell in the final stages of apoptosis. Bax is a pro-apoptotic member of the Bcl-2 family that play key roles in the regulation of intrinsic apoptotic signaling. In the present study we investigated the immunohistochemical distribution of caspase 3, 9 and Bax in intracranial U87 glioblastoma xenograft. Immunohistochemistry showed that the glioblastoma xenografts contain cells positive for caspase-3, caspase-9, and Bax.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号