首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
  46篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2001年   3篇
  1991年   2篇
  1988年   1篇
  1982年   1篇
排序方式: 共有46条查询结果,搜索用时 0 毫秒
11.
Russian Journal of Genetics - The role of genetic susceptibility to the development of lymphoma is confirmed by the accumulating data on common genetic variants of the genes involved in...  相似文献   
12.
This work is the first to report the isolation and identification of bacteria colonizing the roots of the tropical epiphytic orchids Acampe papillosa (Lindl.) Lindl. and Dendrobium moschatum (Buch.-Ham.) Swartz. and bacteria inhabiting inner layers of the aerial and substrate roots of A. papillosa. We showed by the example of this epiphyte that associative bacteria are present in large amounts on the aerial but not the substrate roots. We isolated and identified bacteria from the substrate roots of D. Moschatum and from its growth substrate (pine bark). The structure of the intercellular matrix of the associative bacteria was studied.Translated from Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 825–831.Original Russian Text Copyright © 2004 by Tsavkelova, Cherdyntseva, Netrusov.  相似文献   
13.
Associative cyanobacteria were isolated from the rhizoplane and velamen of the aerial roots of the epiphytic orchids Acampe papillosa, Phalaenopsis amabilis, and Dendrobium moschatum and from the substrate roots of Acampe papillosa and Dendrobium moschatum. Cyanobacteria were isolated on complete and nitrogen-free variants of BG-11 medium. On all media and in all samples, cyanobacteria of the genus Nostoc predominated. Nostoc, Anabaena, and Calothrix were isolated from the surface of the A. papillosa aerial roots, whereas the isolates from the substrate roots were Nostoc, Oscillatoria, and representatives of the LPP-group (Lyngbia, Phormidium, and Plectonema, incapable of nitrogen fixation). On the D. moschatum substrate roots, Nostoc and LPP-group representatives were also found, as well as Fischerella. On the aerial roots of P. amabilis and D. phalaenopsis grown in a greenhouse simulating the climate of moist tropical forest, cyanobacteria were represented by Nostoc, LPP-group, and Scytonema in the D. phalaenopsis and by Nostoc, Scytonema, Calothrix, Spirulina, Oscillatoria, and the LPP-group in P. amabilis. For D. moschatum, the spectra of cyanobacteria populating the substrate root zhizophane and the substrate (pine bark) were compared. In the parenchyma of the aerial roots of P. amabilis, fungal hyphae and/or their half-degraded remains were detected, which testifies to the presence of mycorrhizal fungi this plant. This phenomenon is attributed to the presence of a sheath formed by cyanobacteria and serving as a substrate for fungi.  相似文献   
14.
This work is the first study of the localization of phototrophic microorganisms in the rhizoplane and velamen of epiphytic orchids, namely on the aerial and substrate roots of Acampe papillosa and Dendrobium moschatum and on the aerial roots of the Phalaenopsis amabilis and Dendrobium phalaenopsis. The composition of the bacterial community on the plant roots depended on the conditions of plant growth. Under conditions simulating climate of moist tropical forests, the aerial roots proved to be populated with phototrophic microorganisms among which cyanobacteria predominated. Interlaced fungal hyphae and filamentous cyanobacteria formed a sheath on the surface of aerial roots. The nitrogen-fixing capacity of the sheath of aerial roots was studied by the example of P. amabilis.  相似文献   
15.
16.
17.
Bacteria associated with the roots of greenhouse tropical orchids were shown to produce indole-3-acetic acid (IAA) and to excrete it into the culture liquid. The presence and activity of IAA were demonstrated colorimetrically, by thin-layer chromatography, and by biotests. The associated bacteria varied in their ability to excrete indole compounds (1-28 microg/ml nutrient broth). Addition of tryptophan to the growth medium enhanced phytohormone production. Upon addition of 200 microg/ml tryptophan, the bacteria isolated from Dendrobium moschatum roots (Sphingomonas sp. 18, Microbacterium sp. 23, Mycobacterium sp. 1, Bacillus sp. 3, and Rhizobium sp. 5) produced 50.2, 53.1, 92.9, 37.6, and 60.4 microg IAA/ml respectively, while the bacteria isolated from Acampe papillosa roots (Sphingomonas sp. 42, Rhodococcus sp. 37, Cellulomonas sp. 23, Pseudomonas sp. 24, and Micrococcus luteus) produced 69.4, 49.6, 53.9, 31.0, and 39.2 microg IAA/ml. Auxin production depended on cultivation conditions and on the growth phase of the bacterial cultures. Treatment of kidney bean cuttings with bacterial culture liquid promoted formation of a "root brush" with location height 7.4- to 13.4-fold greater than the one in the control samples. The ability of IAA-producing associated bacteria to act as stimulants of the host plant root development is discussed.  相似文献   
18.
Microbiota of the Orchid Rhizoplane   总被引:1,自引:0,他引:1  
Six bacterial strains isolated from the underground roots of the terrestrial orchid Calanthe vestitavar. rubro-oculatawere found to belong to the genera Arthrobacter, Bacillus, Mycobacterium, and Pseudomonas.Strains isolated from the aerial roots of the epiphytic orchid Dendrobium moschatumwere classified into the genera Bacillus, Curtobacterium, Flavobacterium, Nocardia, Pseudomonas, Rhodococcus, and Xanthomonas.The rhizoplane of the terrestrial orchid was also populated by cyanobacteria of the genera Nostocand Oscillatoria, whereas that of the epiphytic orchid was populated by one genus, Nostoc.In orchids occupying different econiches, the spectra of the bacterial genera revealed differed. The microbial complex of the terrestrial orchid rhizoplane differed from that of the surrounding soil.  相似文献   
19.
The biological effect of the extracellular peptide reactivating factor (RF) from Luteococcus casei on cells of probiotic cultures was studied. The RF showed the protective and reactivating effects on the Bifidobacterium bifidum cells under the action of bile salts and an acidic stress. Also, it acted as a cryoprotector during lyophilisation and long-term culture storage. The RF and the L. casei culture liquid (CL) were shown to have bifidogenic properties. The degree of protection and reactivation of lactic-acid bacteria under the action of bile salts depended on the particular strain properties. The maximum degree of protection (more than thirteen-fold) and reactivation (close to three-fold) was found in Lactobacillus casei, while the minimum values were characteristic of Lactobacillus reuterii. The resistance of lactobacilli to bile was increased in the row of L. acidophilus, L. casei, L. plantarum, L. rhamnosus, and L. reuterii correlating with the RF protection degree.  相似文献   
20.
The ability of pro- and eukaryotic microorganisms to synthesize growth-stimulating phytohormones is reviewed, with emphasis on pathways of biosynthesis of these compounds and their effects on physiological and biochemical properties of the producers. Phytohormones are viewed as specific mediators in interactions between various organisms inhabiting the same ecological niche, the biological role of which is not limited to processes taking place in plants. In addition to setting forth theoretical aspects of this problem, the review underscores the need to utilize such producer microorganisms in plant cultivation and biotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号