首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5803篇
  免费   421篇
  国内免费   6篇
  2024年   7篇
  2023年   20篇
  2022年   73篇
  2021年   152篇
  2020年   92篇
  2019年   137篇
  2018年   193篇
  2017年   151篇
  2016年   218篇
  2015年   351篇
  2014年   357篇
  2013年   404篇
  2012年   532篇
  2011年   518篇
  2010年   295篇
  2009年   280篇
  2008年   391篇
  2007年   380篇
  2006年   270篇
  2005年   260篇
  2004年   276篇
  2003年   218篇
  2002年   177篇
  2001年   92篇
  2000年   87篇
  1999年   60篇
  1998年   45篇
  1997年   22篇
  1996年   23篇
  1995年   16篇
  1994年   20篇
  1993年   5篇
  1992年   19篇
  1991年   20篇
  1990年   10篇
  1989年   9篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1973年   2篇
  1971年   1篇
  1965年   2篇
  1960年   2篇
  1959年   1篇
排序方式: 共有6230条查询结果,搜索用时 15 毫秒
111.
BLT2, a low affinity receptor for leukotriene B4 (LTB4), is a member of the G protein-coupled receptor family and is involved in many signal transduction pathways associated with various cellular phenotypes, including chemotactic motility. However, the regulatory mechanism for BLT2 has not yet been demonstrated. To understand the regulatory mechanism of BLT2, we screened and identified the proteins that bind to BLT2. Using a yeast two-hybrid assay with the BLT2 C-terminal domain as bait, we found that RanBPM, a previously proposed scaffold protein, interacts with BLT2. We demonstrated the specific interaction between BLT2 and RanBPM by GST pulldown assay and co-immunoprecipitation assay. To elucidate the biological function of the RanBPM-BLT2 interaction, we evaluated the effects of RanBPM overexpression or knockdown. We found that BLT2-mediated motility was severely attenuated by RanBPM overexpression and that knockdown of endogenous RanBPM by shRNA strongly promoted BLT2-mediated motility, suggesting a negative regulatory function of RanBPM toward BLT2. Furthermore, we observed that the addition of BLT2 ligands caused the dissociation of BLT2 and RanBPM, thus releasing the negative regulatory effect of RanBPM. Finally, we propose that Akt-induced BLT2 phosphorylation at residue Thr355, which occurs after the addition of BLT2 ligands, is a potential mechanism by which BLT2 dissociates from RanBPM, resulting in stimulation of BLT2 signaling. Taken together, our results suggest that RanBPM acts as a negative regulator of BLT2 signaling to attenuate BLT2-mediated cell motility.  相似文献   
112.
The serine-rich repeat glycoproteins of Gram-positive bacteria comprise a large family of cell wall proteins. Streptococcus agalactiae (group B streptococcus, GBS) expresses either Srr1 or Srr2 on its surface, depending on the strain. Srr1 has recently been shown to bind fibrinogen, and this interaction contributes to the pathogenesis of GBS meningitis. Although strains expressing Srr2 appear to be hypervirulent, no ligand for this adhesin has been described. We now demonstrate that Srr2 also binds human fibrinogen and that this interaction promotes GBS attachment to endothelial cells. Recombinant Srr1 and Srr2 bound fibrinogen in vitro, with affinities of KD = 2.1 × 10−5 and 3.7 × 10−6 m, respectively, as measured by surface plasmon resonance spectroscopy. The binding site for Srr1 and Srr2 was localized to tandem repeats 6–8 of the fibrinogen Aα chain. The structures of both the Srr1 and Srr2 binding regions were determined and, in combination with mutagenesis studies, suggest that both Srr1 and Srr2 interact with a segment of these repeats via a “dock, lock, and latch” mechanism. Moreover, properties of the latch region may account for the increased affinity between Srr2 and fibrinogen. Together, these studies identify how greater affinity of Srr2 for fibrinogen may contribute to the increased virulence associated with Srr2-expressing strains.  相似文献   
113.
Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host''s control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study.  相似文献   
114.
Nucleotide sequence analyses of the Pvs48/45 and Pvs47 genes were conducted in 46 malaria patients from the Republic of Korea (ROK) (n = 40) and returning travellers from India (n = 3) and Indonesia (n = 3). The domain structures, which were based on cysteine residue position and secondary protein structure, were similar between Plasmodium vivax (Pvs48/45 and Pvs47) and Plasmodium falciparum (Pfs48/45 and Pfs47). In comparison to the Sal-1 reference strain (Pvs48/45, PVX_083235 and Pvs47, PVX_083240), Korean isolates revealed seven polymorphisms (E35K, H211N, K250N, D335Y, A376T, I380T and K418R) in Pvs48/45. These isolates could be divided into five haplotypes with the two major types having frequencies of 47.5% and 20%, respectivelfy. In Pvs47, 10 polymorphisms (F22L, F24L, K27E, D31N, V230I, M233I, E240D, I262T, I273M and A373V) were found and they could be divided into four haplotypes with one major type having a frequency of 75%. The Pvs48/45 isolates from India showed a unique amino acid substitution site (K26R). Compared to the Sal-1 and ROK isolates, the Pvs47 isolates from travellers returning from India and Indonesia had amino acid substitutions (S57T and I262K). The current data may contribute to the development of the malaria transmission-blocking vaccine in future clinical trials.  相似文献   
115.
116.
Rice is staple food of half of mankind and paddy soils account for the largest anthropogenic wetlands on earth. Ample of research is being done to find cultivation methods under which the integrative greenhouse effect caused by emitted CH4 and N2O would be mitigated. Whereas most of the research focuses on quantifying such emissions, there is a lack of studies on the biogeochemistry of paddy soils. In order to deepen our mechanistic understanding of N2O and CH4 fluxes in rice paddies, we also determined NO3 ? and N2O concentrations as well as N2O isotope abundances and presence of O2 along soil profiles of paddies which underwent three different water managements during the rice growing season(s) in (2010 and) 2011 in Korea. Largest amounts of N2O (2 mmol m?2) and CH4 (14.5 mol m?2) degassed from the continuously flooded paddy, while paddies with less flooding showed 30–60 % less CH4 emissions and very low to negative N2O balances. In accordance, the global warming potential (GWP) was lowest for the Intermittent Irrigation paddy and highest for the Traditional Irrigation paddy. The N2O emissions could the best be explained (*P < 0.05) with the δ15N values and N2O concentrations in 40–50 cm soil depth, implying that major N2O production/consumption occurs there. No significant effect of NO3 ? on N2O production has been found. Our study gives insight into the soil of a rice paddy and reveals areas along the soil profile where N2O is being produced. Thereby it contributes to our understanding of subsoil processes of paddy soils.  相似文献   
117.
Klebsiella species are the most extensively studied among a number of 2,3-butanediol (2,3-BDO)-producing microorganisms. The ability to metabolize a wide variety of substrates together with the ease of cultivation made this microorganisms particularly promising for the application in industrial-scale production of 2,3-BDO. However, the pathogenic characteristics of encapsulated Klebsiella species are considered to be an obstacle hindering their industrial applications. Here, we removed the virulence factors from three 2,3-BDO-producing strains, Klebsiella pneumoniae KCTC 2242, Klebsiella oxytoca KCTC1686, and K. oxytoca ATCC 43863 through site-specific recombination technique. We generated deletion mutation in wabG gene encoding glucosyltransferase which plays a key role in the synthesis of outer core lipopolysaccharides (LPS) by attaching the first outer core residue d-GalAp to the O-3 position of the l,d-HeppII residue. The morphologies and adhesion properties against epithelial cells were investigated, and the results indicated that the wabG mutant strains were devoid of the outer core LPS and lost the ability to retain capsular structure. The time profile of growth and 2,3-BDO production from K. pneumoniae KCTC 2242 and K. pneumoniae KCTC 2242 ΔwabG were analyzed in batch culture with initial glucose concentration of 70 g/l. The growth was not affected by disrupting wabG gene, but the production of 2,3-BDO decreased from 31.27 to 22.44 g/l in mutant compared with that of parental strain. However, the productions of acetoin and lactate from wabG mutant strain were negligible, whereas that from parental strain reached to ~5 g/l.  相似文献   
118.
119.
We have investigated the membrane destabilizing properties of synthetic amphiphilic cationic peptides, MAX1 and MAX35, which have the propensity to form β-hairpin structures under certain conditions, and a control non-β-hairpin-forming peptide MAX8V16E. All three peptides bind to liposomes containing a mixture of zwitterionic POPC and negatively charged POPS lipids as determined by Zeta potential measurements. Circular dichroism measurements indicated folding of MAX1 and MAX35 in the presence of the POPC/POPS liposomes, whereas no such folding was observed with MAX8V16E. There was no binding or folding of these peptides to liposomes containing only POPC. MAX1 and MAX35 induced release of contents from negatively charged liposomes, whereas MAX8V16E failed to promote solute release under identical conditions. Thus, MAX1 and MAX35 bind to, and fold at the surface of negatively charged liposomes adopting a lytic conformation. We ruled out leaky fusion as a mechanism of release by including 2 mol % PEG-PE in the liposomes, which inhibits aggregation/fusion but not folding of MAX or MAX-induced leakage. Using a concentration-dependent quenching probe (calcein), we determined that MAX-induced leakage of liposome contents was an all-or-none process. At MAX1 concentrations, which cause release of ∼50% of the liposomes that contain small (Rh <1.5 nm) markers, only ∼15% of those liposomes release a fluorescent dextran of 40 kDa. A multimeric model of the pore is presented based on these results. Atomistic molecular dynamics simulations show that barrels consisting of 10 β-hairpin MAX1 and MAX35 peptides are relatively more stable than MAX8V16E barrels in the bilayer, suggesting that barrels of this size are responsible for the peptides lytic action.  相似文献   
120.
A motile, curved to twisted rod-shaped aerobic bacterium, designated strain 04SU4-PT, was isolated from freshwater collected from the Woopo wetland (Republic of Korea). Cells were observed to be Gram-stain negative, catalase negative and oxidase positive. The major fatty acids (>10 % of the total) were identified as C19:0 ω8c cyclo (24.6 %), C16:0 (24.3 %) and C18:1 ω7c (13.1 %). The DNA G+C content was determined to be 71.5 mol%. The major polar lipids were identified as phosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid and one unknown aminolipid. The major ubiquinone was determined to be Q-10. A phylogenetic tree based on 16S rRNA gene sequences showed that strain 04SU4-PT forms an evolutionary lineage within the genus Dongia and its nearest neighbour is Dongia mobilis LM22T (98.0 % sequence similarity). Genomic DNA–DNA hybridization of stain 04SU4-PT with D. mobilis LM22T showed relatedness of only 34.2 %. The phenotypic characteristics indicate the strain 04SU4-PT can be distinguished from the sole member of the genus Dongia. On the basis of the data presented in this study, strain 04SU4-PT represents a novel species, for which the name Dongia rigui is proposed. The type strain is 04SU4-PT (KCTC 23341T = JCM 17521T).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号