首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19059篇
  免费   1637篇
  国内免费   1721篇
  22417篇
  2024年   53篇
  2023年   226篇
  2022年   525篇
  2021年   749篇
  2020年   576篇
  2019年   768篇
  2018年   770篇
  2017年   579篇
  2016年   818篇
  2015年   1226篇
  2014年   1477篇
  2013年   1461篇
  2012年   1832篇
  2011年   1719篇
  2010年   1108篇
  2009年   961篇
  2008年   1219篇
  2007年   1122篇
  2006年   893篇
  2005年   799篇
  2004年   695篇
  2003年   604篇
  2002年   570篇
  2001年   297篇
  2000年   260篇
  1999年   227篇
  1998年   153篇
  1997年   114篇
  1996年   75篇
  1995年   59篇
  1994年   58篇
  1993年   37篇
  1992年   58篇
  1991年   45篇
  1990年   43篇
  1989年   35篇
  1988年   26篇
  1987年   19篇
  1986年   20篇
  1985年   20篇
  1984年   13篇
  1983年   11篇
  1982年   11篇
  1979年   13篇
  1978年   6篇
  1976年   5篇
  1975年   9篇
  1974年   8篇
  1970年   4篇
  1968年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.

Background and Methods

In this study, we utilized a combination of low oxygen tension and a novel anti-oxidant, 4-(3,4-dihydroxy-phenyl)-derivative (DHP-d) to directly induce adipose tissue stromal cells (ATSC) to de-differentiate into more primitive stem cells. De-differentiated ATSCs was overexpress stemness genes, Rex-1, Oct-4, Sox-2, and Nanog. Additionally, demethylation of the regulatory regions of Rex-1, stemnesses, and HIF1α and scavenging of reactive oxygen species were finally resulted in an improved stem cell behavior of de-differentiate ATSC (de-ATSC). Proliferation activity of ATSCs after dedifferentiation was induced by REX1, Oct4, and JAK/STAT3 directly or indirectly. De-ATSCs showed increased migration activity that mediated by P38/JUNK and ERK phosphorylation. Moreover, regenerative efficacy of de-ATSC engrafted spinal cord-injured rats and chemical-induced diabetes animals were significantly restored their functions.

Conclusions/Significance

Our stem cell remodeling system may provide a good model which would provide insight into the molecular mechanisms underlying ATSC proliferation and transdifferentiation. Also, these multipotent stem cells can be harvested may provide us with a valuable reservoir of primitive and autologous stem cells for use in a broad spectrum of regenerative cell-based disease therapy.  相似文献   
102.
Drought stress has long been a major constraint in maintaining yield stability of soybean (Glycine max (L.) Merr.) in rainfed ecosystems. The identification of consistent quantitative trait loci (QTL) involving seed yield per plant (YP) and drought susceptibility index (DSI) in a population across different environments would therefore be important in molecular marker-assisted breeding of soybean cultivars suitable for rainfed regions. The YP of a recombinant line population of 184 F2:7:11 lines from a cross of Kefengl and Nannong1138-2 was studied under water-stressed (WS) and well-watered (WW) conditions in field (F) and greenhouse (G) trials, and DSI for yield was calculated in two trials. Nineteen QTLs associated with YP-WS and YP-WW, and 10 QTLs associated with DSI, were identi- fied. Comparison of these QTL locations with previous findings showed that the majority of these regions control one or more traits re- lated to yield and other agronomic traits. One QTL on molecular linkage group (MLG) K for YP-F, and two QTLs on MLG C2 for YP-G, remained constant across different water regimes. The regions on MLG C2 for YP-WW-F and MLG H for YP-WS-F had a pleiotropic effect on DSI-F, and MLG A1 for YP-WS-G had a pleiotropic effect on DSI-G. The identification of consistent QTLs for YP and DSI across different environments will significantly improve the efficiency of selecting for drought tolerance in soybean.  相似文献   
103.
Accumulating data suggested that CXCR4/SDF-1 pathway may play an important role in the metastasis of tumor. We previously demonstrated that CpG ODN could enhance the metastasis of human lung cancer cell via TLR9. Here we further evaluated the possible role of CXCR4/SDF-1 pathway in the enhanced metastasis of human lung cancer 95D cells induced by CpG ODN. Our data showed down-regulation of CXCR4 expression using siRNA against CXCR4 could significantly reduce the enhanced metastasis of 95D cells induced by CpG ODN both in vitro and in vivo. These results suggested that TLR9 agonist might promote the metastasis of human lung cancer cells via CXCR4/SDF-1 pathway.  相似文献   
104.
The 15,389-bp long complete mitogenome of the endangered red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) was determined in this study. The start codon for the COI gene in insects has been extensively discussed, and has long remained a matter of some controversy. Herein, we propose that the CGA (arginine) sequence functions as the start codon for the COI gene in lepidopteran insects, on the basis of complete mitogenome sequences of lepidopteran insects, including P. bremeri, as well as additional sequences of the COI start region from a diverse taxonomic range of lepidopteran species (a total of 53 species from 15 families). In our extensive search for a tRNA-like structure in the A+T-rich region, one tRNATrp-like sequence and one tRNALeu (UUR)-like sequence were detected in the P. bremeri A+T-rich region, and one or more tRNA-like structures were detected in the A+T-rich region of the majority of other sequenced lepidopteran insects, thereby indicating that such features occur frequently in the lepidopteran mitogenomes. Phylogenetic analysis using the concatenated 13 amino acid sequences and nucleotide sequences of PCGs of the four macrolepidopteran superfamilies together with the Tortricoidea and Pyraloidea resulted in the successful recovery of a monophyly of Papilionoidea and a monophyly of Bombycoidea. However, the Geometroidea were unexpectedly identified as a sister group of the Bombycoidea, rather than the Papilionoidea.  相似文献   
105.
Three genes encoding putative protein disulfide isomerase (PDI) were isolated from the Haemaphysalis longicornis EST database and designed as HlPDI-1, HlPDI-2, and HlPDI-3. All three PDI genes contain two typical PDI active sites CXXC and encode putative 435, 499, and 488 amino acids, respectively. The recombinant proteins expressed in Escherichia coli all show PDI activities, and the activities were inhibited by a PDI-specific inhibitor, zinc bacitracin. Western blot analysis and real-time PCR revealed that three HlPDIs were present in all the developmental stages of the tick as well as in the midgut, salivary glands, ovary, hemolymph, and fatbody of adult female ticks, but the three genes were expressed at the highest level in the egg stage. HlPDI-1 is expressed primarily in the ovary and secondarily in the salivary glands. HlPDI-2 and HlPDI-3 are expressed primarily in the salivary gland, suggesting that the PDI genes are important for tick biology, especially for egg development, and that they play distinct roles in different tissues. Blood feeding induced significantly increased expression of HlPDI-1 and HlPDI-3 in both partially fed nymphs and adults. Babesia gibsoni-infected larval ticks expressed HlPDI-1 and HlPDI-3 2.0 and 4.0 times higher than uninfected normal larval ticks, respectively. The results indicate that HlPDI-1 and HlPDI-3 might be involved in tick blood feeding and Babesia parasite infection in ticks.  相似文献   
106.
107.
You M  Spangler J  Li E  Han X  Ghosh P  Hristova K 《Biochemistry》2007,46(39):11039-11046
Mutations in fibroblast growth factor receptors are known as the genetic basis of skeletal growth disorders. The mechanism of pathogenesis, as determined by mutation-induced changes in receptor structure, interactions, and function, is elusive. Here we study three pathogenic Cys mutations, associated with either thanatophoric dysplasia or achondroplasia, in the TM domain of fibroblast growth factor receptors 3 (FGFR3). We characterize the dimerization propensities of the mutant TM domains in detergents and in lipid bilayers, in the presence and absence of reducing agents, and compare them to previous measurements of wild-type. We find that the Cys mutations increase the propensity for dimerization in detergent, with the Cys370 mutant exhibiting the highest propensity for disulfide bond formation, the Cys371 mutant having an intermediate propensity, and Cys375 the lowest. Thus, disulfide bonds readily form in detergents, with efficiency that correlates with the severity of the phenotype. In lipid bilayers, however, the Cys370 mutant, which dimerizes strongly in detergent, behaves as the wild-type, suggesting that Cys370-mediated disulfide bonds do not form between the isolated TM domains in bilayers. Thus, the nature of the hydrophobic environment plays an important role in defining the structure and flexibility of transmembrane dimers. These results and previous findings from cellular studies lead us to propose a conformational flexibility mechanism of receptor stabilization as a basis for disregulated FGFR3 signaling in thanatophoric dysplasia and achondroplasia.  相似文献   
108.
Luo C  Tong M  Chilukuri N  Brecht K  Maxwell DM  Saxena A 《Biochemistry》2007,46(42):11771-11779
The reactivation of nerve agent-inhibited acetylcholinesterase (AChE) by oxime is the most important step in the treatment of nerve agent poisoning. Since the evaluation of nerve agent antidotes cannot be conducted in humans, results from animal experiments are extrapolated to humans. Guinea pig is one of the animal models that is frequently used for conducting nerve agent antidote evaluations. Several investigations have demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited AChE. If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the reactivation of guinea pig and human AChEs inhibited by six different G and V type nerve agents. Reactivation kinetic studies with five mono- and bis-pyridinium oximes showed that oxime reactivation of nerve agent-inhibited human AChE in most cases was faster than guinea pig AChE. The most significant enhancement was observed in the reactivation of human AChE inhibited by nerve agents containing bulky side chains GF, GD, and VR, by H-series oximes HLo-7, HI-6, and ICD-585. In these cases, species-related differences observed between the two AChEs, based on the second-order reactivation rate constants, were 90- to over 400-fold. On the other hand, less than 3-fold differences were observed in the rates of aging of nerve agent-inhibited guinea pig and human AChEs. These results suggest that the remarkable species-related differences observed in the reactivation of nerve agent-inhibited guinea pig and human AChEs were not due to differences in the rates of aging. These results also suggest that guinea pig may not be an appropriate animal model for the in vivo evaluation of oxime therapy.  相似文献   
109.
A weak chemiluminescence (CL) emission was observed due to the production of singlet oxygen ((1)O(2)) during the decomposition of peroxomonosulphate (HSO(5)(-)) catalysed by cobalt(II). Low molecular mass aliphatic monocarboxylic acids, such as formic, acetic, propionic, butyric and valeric acids, influenced the CL emission, and the reaction of aliphatic monocarboxylic acids with HSO(5)(-)/Co(2+) solution was further investigated using a flow injection analysis (FIA) CL method. The results indicated that the CL intensities of aliphatic monocarboxylic acids were improved with increase in the carbon chain length in the potassium peroxomonosulphate-cobalt(II) sulphate system. Generation of singlet oxygen was confirmed by the fact that the CL emission of aliphatic monocarboxylic acids with the HSO(5)(-)/Co(2+) solution was quenched by NaN(3), and from the CL spectrum of the reaction system. Additionally, a possible mechanism of aliphatic monocarboxylic acids CL emission enhancement was proposed.  相似文献   
110.
The differential expression of phospholipase D (PLD) isozymes, which include PLD1 and PLD2, was examined in various murine tissues, including the cerebrum, cerebellum, heart, lung, liver, spleen, stomach, pancreas, ileum, colon, adrenal gland, kidneys, testes, ovaries, and uterus. In Western blot analysis, only PLD1 was detected in the heart and ovary, while only PLD2 was detected in the pancreas and ileum. Both PLD1 and PLD2 were strongly expressed in the cerebrum, cerebellum, and lung, and both were also expressed in the liver, spleen, stomach, colon, kidney, testes, and uterus. Immunohistochemistry showed intense PLD immunostaining in the cerebrum, cerebellum, lungs, intestines, and testis, and weak PLD immunostaining in the liver, kidneys, spleen, and heart. These findings suggest that PLD1 and PLD2 are differentially expressed in the various organs of mice, and that each PLD isozyme plays a distinct role in each organ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号