首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4834篇
  免费   341篇
  2024年   3篇
  2023年   17篇
  2022年   56篇
  2021年   101篇
  2020年   78篇
  2019年   94篇
  2018年   144篇
  2017年   119篇
  2016年   197篇
  2015年   298篇
  2014年   315篇
  2013年   366篇
  2012年   455篇
  2011年   444篇
  2010年   318篇
  2009年   263篇
  2008年   345篇
  2007年   308篇
  2006年   274篇
  2005年   223篇
  2004年   221篇
  2003年   181篇
  2002年   153篇
  2001年   30篇
  2000年   27篇
  1999年   23篇
  1998年   33篇
  1997年   22篇
  1996年   14篇
  1995年   13篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
  1965年   1篇
  1962年   1篇
排序方式: 共有5175条查询结果,搜索用时 15 毫秒
61.
Highlights? Tmem64-deficient mice show increased bone volume ? Tmem64 deficiency reduces [Ca2+]i oscillation in response to RANKL stimulation ? Tmem64 interacts with SERCA2 ? Tmem64 positively regulates osteoclast formation via SERCA2/Ca2+ signaling  相似文献   
62.
63.
Thioredoxin-interacting protein (TXNIP) has multiple functions, including tumor suppression and involvement in cell proliferation and apoptosis. However, its role in the inflammatory process remains unclear. In this report, we demonstrate that Txnip−/− mice are significantly more susceptible to lipopolysaccharide (LPS)-induced endotoxic shock. In response to LPS, Txnip−/− macrophages produced significantly higher levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS), and an iNOS inhibitor rescued Txnip−/− mice from endotoxic shock-induced death, demonstrating that NO is a major factor in TXNIP-mediated endotoxic shock. This susceptibility phenotype of Txnip−/− mice occurred despite reduced IL-1β secretion due to increased S-nitrosylation of NLRP3 compared to wild-type controls. Taken together, these data demonstrate that TXNIP is a novel molecule that links NO synthesis and NLRP3 inflammasome activation during endotoxic shock.  相似文献   
64.
Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.  相似文献   
65.
Remarkable improvements in the electrochemical performance of Si materials for Li‐ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si‐encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si‐based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 ~ 40 μm), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g?1 at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si‐encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g?1.  相似文献   
66.
In spite of the general concept that herbal supplements are safe, there is a lack of appropriate quality control measures and regulations that often culminates in serious undesirable effects such as allergic reactions and renal and liver damage. Thus, there is a growing need to establish a suitable methodology that enables authentication and quality assurance of herbal products. The root of Panax ginseng C. A. Meyer (Araliaceae), commonly called ginseng, is traditionally recognized as a prominent herbal medicine in Far East Asia. There are two types of processed ginseng, white and red ginseng, based on processing methods, and these play a significant role in modifying ginsenosides, which are the major bioactive metabolites in these products. Herein we purify and characterize a new ginsenoside, 20(R)-ginsenoside Rf, utilizing NMR, UPLC-ESI-Q-TOF-MS and validate the metabolite is generated from its epimer, 20(S)-ginsenoside Rf during the steaming process to manufacture red ginseng. We further propose a relevant mechanism for the chemical conversion. This finding updates chemical profiling of ginseng products that can be employed in quality assurance and authentication.  相似文献   
67.

Objective

Progranulin and C1q/TNF-related protein-3 (CTRP3) were recently discovered as novel adipokines which may link obesity with altered regulation of glucose metabolism, chronic inflammation and insulin resistance.

Research Design and Methods

We examined circulating progranulin and CTRP3 concentrations in 127 subjects with (n = 44) or without metabolic syndrome (n = 83). Furthermore, we evaluated the relationship of progranulin and CTRP3 levels with inflammatory markers and cardiometabolic risk factors, including high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), estimated glomerular filtration rate (eGFR), and adiponectin serum concentrations, as well as carotid intima-media thickness (CIMT).

Results

Circulating progranulin levels are significantly related with inflammatory markers, hsCRP (r = 0.30, P = 0.001) and IL-6 (r = 0.30, P = 0.001), whereas CTRP3 concentrations exhibit a significant association with cardiometabolic risk factors, including waist circumference (r = −0.21), diastolic blood pressure (r = −0.21), fasting glucose (r = −0.20), triglyceride (r = −0.34), total cholesterol (r = −0.25), eGFR (r = 0.39) and adiponectin (r = 0.26) levels. Serum progranulin concentrations were higher in patients with metabolic syndrome than those of the control group (199.55 [179.33, 215.53] vs. 185.10 [160.30, 204.90], P = 0.051) and the number of metabolic syndrome components had a significant positive correlation with progranulin levels (r = 0.227, P = 0.010). In multiple regression analysis, IL-6 and triglyceride levels were significant predictors of serum progranulin levels (R 2 = 0.251). Furthermore, serum progranulin level was an independent predictor for increased CIMT in subjects without metabolic syndrome after adjusting for other cardiovascular risk factors (R 2 = 0.365).

Conclusions

Serum progranulin levels are significantly associated with systemic inflammatory markers and were an independent predictor for atherosclerosis in subjects without metabolic syndrome.

Trial Registration

ClinicalTrials.gov NCT01668888  相似文献   
68.

Introduction

To assess whether the value of CYFRA21-1 in the aspirates of ultrasonography-guided fine-needle aspiration biopsy (US-FNAB) can contribute to improving the performances of US-FNAB in the diagnosis of axillary lymph node (LN) metastasis in breast cancer patients.

Methods

US-FNAB was performed in 156 axillary LNs in 152 breast cancer patients (mean age: 51.4 years, range: 17–92 years). Concentrations of CYFRA21-1 were measured from washouts of the syringe used during US-FNAB. Tumor marker concentrations, US-FNAB, intraoperative sentinel node biopsy (SNB), and surgical pathology results were reviewed and analyzed. For comparison, the values of CEA and CA15-3 were also measured from washouts.

Results

Among the 156 LNs, 75 (48.1%) were benign, and 81 (51.9%) were metastases. Mean concentrations of CYFRA21-1 were significantly higher in metastasis compared to benign LNs (P<0.001). US-FNAB combined to CYFRA21-1 showed significantly higher sensitivity, NPV, and accuracy compared to US-FNAB alone (all values P<0.05). All diagnostic indices of US-FNAB combined to CYFRA21-1 were significantly higher compared to US-FNAB combined with CEA or CA15-3 (all P<0.001). Of the 28 metastatic LNs which showed metastasis on SNB, CYFRA21-1 showed higher positive rate of 75.0% (CEA or CA15-3∶60.7%, P = 0.076).

Conclusion

Measuring CYFRA 21-1 concentrations from US-FNAB aspirates improves sensitivity, NPV, and accuracy of US-FNAB alone, and may contribute to reducing up to 75.0% of unnecessary intraoperative SNB. Compared to CEA or CA15-3, CYFRA21-1 shows significantly higher performances when combined to US-FNAB in the preoperative diagnosis of LN metastasis in breast cancer patients.  相似文献   
69.
Indian Journal of Microbiology - For bacteria sampling studies, various collection methods have been used to identify bacteria. To obtain accurate information about bacteria, high quality samples...  相似文献   
70.

Background

Conjugated polymers have been developed as effective materials for interfacing prosthetic device electrodes with neural tissue. Recent focus has been on the development of conjugated polymers that contain biological components in order to improve the tissue response upon implantation of these electrodes.

Methods

Carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) monomer was synthesized in order to covalently bind peptides to the surface of conjugated polymer films. EDOTacid was copolymerized with EDOT monomer to form stable, electrically conductive copolymer films referred to as PEDOT-PEDOTacid. The peptide GGGGRGDS was bound to PEDOT-PEDOTacid to create peptide functionalized PEDOT films.

Results

The PEDOT-PEDOTacid-peptide films increased the adhesion of primary rat motor neurons between 3 and 9 times higher than controls, thus demonstrating that the peptide maintained its biological activity.

Conclusions

The EDOT-acid monomer can be used to create functionalized PEDOT-PEDOTacid copolymer films that can have controlled bioactivity.

General Significance

PEDOT-PEDOTacid-peptide films have the potential to control the behavior of neurons and vastly improve the performance of implanted electrodes. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号