首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8862篇
  免费   671篇
  国内免费   653篇
  2024年   19篇
  2023年   114篇
  2022年   284篇
  2021年   496篇
  2020年   297篇
  2019年   376篇
  2018年   379篇
  2017年   302篇
  2016年   368篇
  2015年   572篇
  2014年   686篇
  2013年   703篇
  2012年   829篇
  2011年   718篇
  2010年   431篇
  2009年   401篇
  2008年   462篇
  2007年   377篇
  2006年   293篇
  2005年   245篇
  2004年   192篇
  2003年   184篇
  2002年   161篇
  2001年   143篇
  2000年   128篇
  1999年   106篇
  1998年   71篇
  1997年   83篇
  1996年   81篇
  1995年   58篇
  1994年   47篇
  1993年   45篇
  1992年   63篇
  1991年   49篇
  1990年   49篇
  1989年   33篇
  1988年   39篇
  1987年   26篇
  1986年   23篇
  1985年   36篇
  1984年   33篇
  1983年   14篇
  1982年   15篇
  1981年   8篇
  1978年   11篇
  1974年   11篇
  1973年   7篇
  1971年   9篇
  1967年   7篇
  1966年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
241.
Aberrant activation of the Hedgehog (Hh)/Gli pathway contributes to the tumorigenesis of several human cancers, including ovarian cancers. We investigated the function of SMO on cell growth, drug resistance, and invasive ability in A2780/DDP cells. Moreover, we also tested the levels of the downstream target genes of the Hh/Gli pathway in SMO short hairpin RNA (shRNA) lentivirus-infected A2780/DDP cells. Western blot analysis results revealed that the Hh/Gli pathway was activated in cisplatin-resistant A2780/DDP cells. After infection by SMO shRNA lentivirus, the colony formation rate and invasive rate of cisplatin-resistant A2780/DDP cells were decreased. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that upon transfection with SMO shRNA, cell growth was decreased and drug sensitivity to cisplatin was upregulated. Moreover, interference with SMO decreased the expression of MMP-2, MMP-9, VEGF, and Snail in cisplatin-resistant cells. Thus, the Hh/Gli signaling pathway was aberrantly activated in A2780/DDP cells. The colony formation rate and invasive rate were decreased in SMO shRNA lentivirus–infected A2780/DDP cells. All results showed that inhibiting Hh/Gli signaling may negatively regulate the proliferation, invasion, and metastasis of cisplatin-resistant A2780/DDP cells, as well as increase the sensitivity of A2780/DDP to the chemotherapeutic drug of cisplatin.  相似文献   
242.
Knowledge of the genetic architecture of pathogen infectivity and host resistance is essential for a mechanistic understanding of coevolutionary processes, yet the genetic basis of these interacting traits remains unknown for most host–pathogen systems. We used a comparative genomic approach to explore the genetic basis of infectivity in Pasteuria ramosa, a Gram-positive bacterial pathogen of planktonic crustaceans that has been established as a model for studies of Red Queen host–pathogen coevolution. We sequenced the genomes of a geographically, phenotypically, and genetically diverse collection of P. ramosa strains and performed a genome-wide association study to identify genetic correlates of infection phenotype. We found multiple polymorphisms within a single gene, Pcl7, that correlate perfectly with one common and widespread infection phenotype. We then confirmed this perfect association via Sanger sequencing in a large and diverse sample set of P. ramosa clones. Pcl7 codes for a collagen-like protein, a class of adhesion proteins known or suspected to be involved in the infection mechanisms of a number of important bacterial pathogens. Consistent with expectations under Red Queen coevolution, sequence variation of Pcl7 shows evidence of balancing selection, including extraordinarily high diversity and absence of geographic structure. Based on structural homology with a collagen-like protein of Bacillus anthracis, we propose a hypothesis for the structure of Pcl7 and the physical location of the phenotype-associated polymorphisms. Our results offer strong evidence for a gene governing infectivity and provide a molecular basis for further study of Red Queen dynamics in this model host–pathogen system.  相似文献   
243.
To achieve the high protein concentrations required for subcutaneous administration of biologic therapeutics, numerous manufacturing process challenges are often encountered. From an operational perspective, high protein concentrations result in highly viscous solutions, which can cause pressure increases during ultrafiltration. This can also lead to low flux during ultrafiltration and sterile filtration, resulting in long processing times. In addition, there is a greater risk of product loss from the hold-up volumes during filtration operations. From a formulation perspective, higher protein concentrations present the risk of higher aggregation rates as the closer proximity of the constituent species results in stronger attractive intermolecular interactions and higher frequency of self-association events. There are also challenges in achieving pH and excipient concentration targets in the ultrafiltration/diafiltration (UF/DF) step due to volume exclusion and Donnan equilibrium effects, which are exacerbated at higher protein concentrations. This paper highlights strategies to address these challenges, including the use of viscosity-lowering excipients, appropriate selection of UF/DF cassettes with modified membranes and/or improved flow channel design, and increased understanding of pH and excipient behavior during UF/DF. Additional considerations for high-concentration drug substance manufacturing, such as appearance attributes, stability, and freezing and handling are also discussed. These strategies can be employed to overcome the manufacturing process challenges and streamline process development efforts for high-concentration drug substance manufacturing.  相似文献   
244.
245.
246.
miR-222 participates in many cardiovascular diseases, but its effect on cardiac remodeling induced by diabetes is unclear. This study evaluated the functional role of miR-222 in cardiac fibrosis in diabetic mice. Streptozotocin (STZ) was used to establish a type 1 diabetic mouse model. After 10 weeks of STZ injection, mice were intravenously injected with Ad-miR-222 to induce the overexpression of miR-222. miR-222 overexpression reduced cardiac fibrosis and improved cardiac function in diabetic mice. Mechanistically, miR-222 inhibited the endothelium to mesenchymal transition (EndMT) in diabetic mouse hearts. Mouse heart fibroblasts and endothelial cells were isolated and cultured with high glucose (HG). An miR-222 mimic did not affect HG-induced fibroblast activation and function but did suppress the HG-induced EndMT process. The antagonism of miR-222 by antagomir inhibited HG-induced EndMT. miR-222 regulated the promoter region of β-catenin, thus negatively regulating the Wnt/β-catenin pathway, which was confirmed by β-catenin siRNA. Taken together, our results indicated that miR-222 inhibited cardiac fibrosis in diabetic mice via negatively regulating Wnt/β-catenin-mediated EndMT.  相似文献   
247.
This study investigated the role of microRNA-95 (miR-95) in gastric cancer (GC) and to elucidate the underlying mechanism. Initially, bioinformatic prediction was used to predict the differentially expressed genes and related miRNAs in GC. miR-95 and DUSP5 expression was altered in GC cell line (MGC803) to evaluate their respective effects on the epithelial–mesenchymal transition (EMT) process, cellular processes (cell proliferation, migration, invasion, cell cycle, and apoptosis), cancer stem cell (CSC) phenotype, as well as tumor growth ability. It was further predicted in bioinformatic prediction and verified in GC tissue and cell line experiments that miR-95 was highly expressed in GC. miR-95 negatively regulated DUSP5, which resulted in the MAPK pathway activation. Inhibited miR-95 or overexpressed DUSP5 was observed to inhibit the levels of CSC markers (CD133, CD44, ALDH1, and Lgr5), highlighting the inhibitory role in the CSC phenotype. More important, evidence was obtained demonstrating that miR-95 knockdown or DUSP5 upregulation exerted an inhibitory effect on the EMT process, cellular processes, and tumor growth. Together these results, miR-95 knockdown inhibited GC development via DUSP5-dependent MAPK pathway.  相似文献   
248.
249.
Plastin-3 plays a key role in cancer cell proliferation and invasion, but its prognostic value in pancreatic cancer (PACA) remains poorly defined. In this study, we show that PLS3 messenger RNA is overexpressed in PACA tissue compared with normal tissue. We accumulated 207 cases of PACA specimens to perform immunohistochemical analysis and demonstrated that PLS3 levels correlate with T-classification (p < .001) and pathology (p < .001). Furthermore, overall survival rates (p < .001) in tumors with high PLS3 expression were poor, as assessed through Kaplan–Meier survival analysis. PLS3 was found to be an independent prognostic factor for PACA through multivariate Cox regression analysis. Moreover, we found that PLS3 enhances the proliferation and invasion of tumor cells as assessed through Cell Counting Kit-8, wounding healing assays, and Transwell assays. The upregulation of PLS3 also led to enhanced phosphatidylinositol-3 kinase/protein kinase B signaling in PACA cells. These data suggest that PLS3 is a biomarker to estimate PACA progression and represents a molecular target for PACA therapy.  相似文献   
250.
植物病原真菌的自噬   总被引:1,自引:0,他引:1  
刘伟  杜春梅 《微生物学报》2021,61(11):3363-3376
作为真核生物中普遍存在的现象,自噬不但实现了对细胞内物质的降解和回收利用,而且与植物病原真菌早期侵染阶段的附着胞发育、膨压升高、菌丝体形成、完成侵染等一系列过程密切相关,并且发挥了重要的作用。本文归纳了植物病原真菌自噬的相关基因和自噬过程;总结了自噬对病原真菌生长发育、致病力的调控和影响;概括了病原真菌自噬所涉及的信号通路;阐明了自噬影响植物病原真菌侵染过程的主要分子机制。为今后以自噬相关基因或蛋白作为靶点来筛选抑制病原真菌侵染的新型药物提供新的策略和思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号