首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10415篇
  免费   831篇
  国内免费   732篇
  2024年   15篇
  2023年   133篇
  2022年   320篇
  2021年   569篇
  2020年   382篇
  2019年   442篇
  2018年   490篇
  2017年   374篇
  2016年   440篇
  2015年   639篇
  2014年   705篇
  2013年   806篇
  2012年   990篇
  2011年   871篇
  2010年   491篇
  2009年   419篇
  2008年   573篇
  2007年   477篇
  2006年   416篇
  2005年   351篇
  2004年   270篇
  2003年   250篇
  2002年   185篇
  2001年   172篇
  2000年   146篇
  1999年   153篇
  1998年   92篇
  1997年   94篇
  1996年   96篇
  1995年   77篇
  1994年   85篇
  1993年   65篇
  1992年   59篇
  1991年   74篇
  1990年   58篇
  1989年   44篇
  1988年   32篇
  1987年   17篇
  1986年   22篇
  1985年   19篇
  1984年   17篇
  1983年   20篇
  1982年   8篇
  1980年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1968年   2篇
  1966年   2篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
961.
The role of homocysteine for store-operated calcium influx was investigated in human umbilical cord endothelial cell line. Homocysteine significantly decreased thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization. GSH and DTT prevented homocysteine-induced inhibition of thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; while GSSG had the opposite effect. Homocysteine blocked large conductance Ca2+-activated K+ (BK(Ca)) channels in a concentration-dependent manner and related to the redox status of the endothelial cells. BK(Ca) channels opener NS1619 reversed thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; BK(Ca) channels inhibitor iberiotoxin had the opposite effect. The findings suggest that homocysteine is involved in store-regulated Ca2+ entry through membrane potential-dependent and actin cytoskeleton-dependent mechanisms, redox status of homocysteine and BK(Ca) channels may play a regulatory role in it.  相似文献   
962.
Virulizin, a novel biological response modifier, has demonstrated significant antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. The significant role of macrophages and NK (Natural killer) cells was implicated in the antitumor mechanism of Virulizin where expansion as well as increased activity of macrophages and NK cells were observed in mice treated with Virulizin. Depletion of macrophages compromised Virulizin-induced NK1.1+ cell infiltration into xenografted tumors and was accompanied by reduced antitumor efficacy. In the present study, involvement of macrophages in NK cell activation was investigated further. We found that depletion of NK cells in CD-1 nude mice by anti-ASGM1 antibody significantly compromised the antitumor activity of Virulizin. Cytotoxicity of NK cells isolated from Virulizin-treated mice was enhanced against NK-sensitive YAC-1 cells and C8161 human melanoma cells, but not against NK-insensitive P815 cells. An increased level of IL-12 was observed in the serum of mice treated with Virulizin. IL-12 mRNA and protein levels were also increased in peritoneal macrophages isolated from Virulizin-treated mice. Moreover, Virulizin-induced cytotoxic activity of NK cells isolated from the spleen was abolished when an IL-12 neutralizing antibody was co-administered. In addition, depletion of macrophages in mice significantly impaired Virulizin-induced NK cell cytotoxicty. Taken together, the results suggest that Virulizin induces macrophage IL-12 production, which in turn stimulates NK cell-mediated antitumor activity.  相似文献   
963.
Growth hormone (GH)-releasing peptides (GHRP), a class of synthetic peptidyl GH secretagogues, have been reported to exert a cardioprotective effect on cardiac ischemia. However, whether GHRP have a beneficial effect on chronic heart failure (CHF) is unclear, and the present work aims to clarify this issue. At 9 wk after pressure-overload CHF was created by abdominal aortic banding in rats, one of four variants of GHRP (GHRP-1, -2, and -6 and hexarelin, 100 mug/kg) or saline was injected subcutaneously twice a day for 3 wk. Echocardiography and cardiac catheterization were performed to monitor cardiac function and obtain blood samples for hormone assay. GHRP treatment significantly improved left ventricular (LV) function and remodeling in CHF rats, as indicated by increased LV ejection fraction, LV end-systolic pressure, and diastolic posterior wall thickness and decreased LV end-diastolic pressure and LV end-diastolic dimension. GHRP also significantly alleviated development of cardiac cachexia, as shown by increases in body weight and tibial length in CHF rats. Plasma CA, renin, ANG II, aldosterone, endothelin-1, and atrial natriuretic peptide were significantly elevated in CHF rats but were significantly decreased in GHRP-treated CHF rats. GHRP suppressed cardiomyocyte apoptosis and increased cardiac GH secretagogue receptor mRNA expression in CHF rats. GHRP also decreased myocardial creatine kinase release in hypophysectomized rats subjected to acute myocardial ischemia. We conclude that chronic administration of GHRP alleviates LV dysfunction, pathological remodeling, and cardiac cachexia in CHF rats, at least in part by suppressing stress-induced neurohormonal activations and cardiomyocyte apoptosis.  相似文献   
964.
965.
We identified a cadherin-like domain (CHDL) using computational analysis. The CHDL domain is mostly distributed in Proteobacteria and Cyanobacteria, although it is also found in some eukaryotic proteins. Prediction of three-dimensional protein folding indicated that the CHDL domain has an immunoglobulin beta-sandwich fold and belongs to the cadherin superfamily. The CHDL domain does not have LDRE and DxNDN motifs, which are conserved in the cadherin domain, but has three other motifs: PxAxxD, DxDxD and YT-V/I-S/T-D, which might contribute to forming a calcium-binding site. The identification of this cadherin-like domain indicates that the cadherin superfamily may exhibit wider sequence and structural diversity than previously appreciated. Domain architecture analysis revealed that the CHDL domain is also associated with other adhesion domains as well as enzyme domains. Based on computational analysis and previous experimental data, we predict that the CHDL domain has calcium-binding and also carbohydrate-binding activity.  相似文献   
966.
The spore forming Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax, has achieved notoriety due to its use as a bioterror agent. In the environment, B. anthracis exists as a dormant endospore. Germination of endospores during their internalization within the myeloid phagocyte, and the ability of those endospores to survive exposure to antibacterial killing mechanisms such as superoxide (O(2)*-, is a key initial event in the infective process. We report herein that endospores exposed to fluxes of O(2)*- typically found in stimulated phagocytes had no effect on viability. Further endospores of the Sterne strain of B. anthracis were found to scavenge O(2)*-, which may enhance the ability of the bacterium to survive within the hostile environment of the phagolysosome. Most intriguing was the observation that endospore germination was stimulated by a flux of O(2)*- as low as 1 microM/min. Data presented herein suggest that B. anthracis may co-opt O(2)*- which is produced by stimulated myeloid phagocytes and is an essential element of host immunity, as a necessary step in productive infection of the host.  相似文献   
967.
Dong A  Liu Z  Zhu Y  Yu F  Li Z  Cao K  Shen WH 《Plant physiology》2005,138(3):1446-1456
Nucleosome assembly protein 1 (NAP1) is conserved from yeast to human and facilitates the in vitro assembly of nucleosomes as a histone chaperone. Inconsistent with their proposed function in the nucleus, however, many NAP1 proteins had been reported to localize in the cytoplasm. We investigated the subcellular localization of tobacco (Nicotiana tabacum) and rice (Oryza sativa) NAP1 family proteins first by identification of interacting partners and by direct examination of the localization of green fluorescent protein-tagged proteins. Through treatment of tobacco cells with leptomycin B and mutagenesis of nuclear export signal, we demonstrated that Nicta;NAP1;1 and Orysa;NAP1;1 shuttle between the cytoplasm and the nucleus. Together with the demonstration that tobacco NAP1 proteins bind histone H2A and H2B, our results support the current model and provide additional evidence that function of NAP1 as histone chaperones appears to be conserved in plants. In addition, we show that tobacco NAP1 proteins interact with tubulin and the mitotic cyclin Nicta;CYCB1;1, suggesting a role for NAP1 in microtubule dynamics. Interestingly, in spite of their high homology with the above NAP1 proteins, the other three tobacco proteins and Orysa;NAP1;2 did not show nucleocytoplasmic shuttling and were localized only in the cytoplasm. Moreover, Orysa;NAP1;3 that lacks a typical nuclear localization signal sequence was localized in both the cytoplasm and the nucleus. Finally, we show that only Orysa;NAP1;3 could be phosphorylated by casein kinase 2alpha in vitro. However, this phosphorylation was not responsible for nuclear import of Orysa;NAP1;3 as being demonstrated through mutagenesis studies. Together, our results provide an important step toward elucidating the molecular mechanism of function of the NAP1 family proteins in plants.  相似文献   
968.
Liu B  Li P  Li X  Liu C  Cao S  Chu C  Cao X 《Plant physiology》2005,139(1):296-305
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two types of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. The activity of Dicer or Dicer-like (DCL) proteins is required for the maturation of miRNAs and siRNAs. In this study, we cloned and sequenced 66 candidate rice (Oryza sativa) miRNAs out of 1,650 small RNA sequences (19 to approximately 25 nt), and they could be further grouped into 21 families, 12 of which are newly identified and three of which, OsmiR528, OsmiR529, and OsmiR530, have been confirmed by northern blot. To study the function of rice DCL proteins (OsDCLs) in the biogenesis of miRNAs and siRNAs, we searched genome databases and identified four OsDCLs. An RNA interference approach was applied to knock down two OsDCLs, OsDCL1 and OsDCL4, respectively. Strong loss of function of OsDCL1IR transformants that expressed inverted repeats of OsDCL1 resulted in developmental arrest at the seedling stage, and weak loss of function of OsDCL1IR transformants caused pleiotropic developmental defects. Moreover, all miRNAs tested were greatly reduced in OsDCL1IR but not OsDCL4IR transformants, indicating that OsDCL1 plays a critical role in miRNA processing in rice. In contrast, the production of siRNA from transgenic inverted repeats and endogenous CentO regions were not affected in either OsDCL1IR or OsDCL4IR transformants, suggesting that the production of miRNAs and siRNAs is via distinct OsDCLs.  相似文献   
969.
Lin HY  Hopkins R  Cao HJ  Tang HY  Alexander C  Davis FB  Davis PJ 《Steroids》2005,70(5-7):444-449
Because the androgen and estrogen nuclear hormone receptors are subject to acetylation, we speculated that the nuclear thyroid hormone receptor-beta1 (TRbeta1), another superfamily member, was also subject to this posttranslational modification. Treatment of 293T cells that contain TRbeta1(wt) with l-thyroxine (T4)(10(-7)M, total concentration) resulted in the accumulation of acetylated TR in nuclear fractions at 30-45 min and a decrease in signal by 60 min. A similar time course characterized recruitment by TR of p300, a coactivator protein with intrinsic transacetylase activity. Recruitment by the receptor of SRC-1, a TR coactivator that also acetylates nucleoproteins, was also demonstrated. Inhibition of the MAPK (ERK1/2) signal transduction cascade by PD 98059 blocked the acetylation of TR caused by T4. Tetraiodothyroacetic acid (tetrac) decreased T4-induced acetylation of TR. At 10(-7)M, 3,5,3'-triiodo-l-thyronine (T3) was comparably effective to T4 in causing acetylation of TR. We studied acetylation in TR that contained mutations in the DNA-binding domain (DBD) (residues 128-142) that are known to be relevant to recruitment of coactivators and to include the MAPK docking site. In response to T4 treatment, the K128A TR mutant transfected into CV-1 cells recruited p300, but not SRC-1, and was subject to acetylation. R132A complexed with SRC-1, but not p300; it was acetylated equally well in both the absence and presence of T4. S142E was acetylated in the absence and presence of T4 and bound SRC-1 under both conditions; this mutant was also capable of binding p300 in the presence of T4. There was no serine phosphorylation of TR in any of these mutants. We conclude that (1) TRbeta1, like AR and ER, is subject to acetylation; (2) the process of acetylation of TR requires thyroid hormone-directed MAPK activity, but not serine phosphorylation of TR by MAPK, suggesting that the contribution of MAPK is upstream in the activation of the acetylase; (3) the amino acid residue 128-142 region of the DBD of TR is important to thyroid hormone-associated recruitment of p300 and SRC-1; (4) acetylation of TR DBD mutants that is directed by T4 appears to be associated with recruitment of p300.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号