首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2827篇
  免费   209篇
  国内免费   208篇
  2024年   4篇
  2023年   44篇
  2022年   104篇
  2021年   192篇
  2020年   109篇
  2019年   129篇
  2018年   119篇
  2017年   115篇
  2016年   155篇
  2015年   196篇
  2014年   210篇
  2013年   246篇
  2012年   272篇
  2011年   244篇
  2010年   147篇
  2009年   119篇
  2008年   147篇
  2007年   113篇
  2006年   88篇
  2005年   69篇
  2004年   63篇
  2003年   48篇
  2002年   42篇
  2001年   32篇
  2000年   24篇
  1999年   29篇
  1998年   17篇
  1997年   20篇
  1996年   23篇
  1995年   12篇
  1994年   19篇
  1993年   9篇
  1992年   11篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1968年   3篇
排序方式: 共有3244条查询结果,搜索用时 31 毫秒
991.
We determined whether manganese superoxide dismutase (MnSOD)-plasmid liposome (PL) transfection of C57BL/ 6NHsd mouse bone marrow protected cells irradiated at room temperature (24 degrees C) or in the cryopreserved state. MnSOD-overexpressing hematopoietic progenitor 2C6 cells were radioresistant compared to the parent 32D cl 3 cells when irradiated frozen or at 24 degrees C. Fresh whole marrow from mice injected intravenously with MnSOD-PL prior to explant as well as explanted marrow single cell suspensions transfected in vitro were irradiated at 24 degrees C or -80 degrees C. In vivo or in vitro transfection of marrow with MnSOD-PL produced significant radiation protection of irradiated marrow progenitor cells compared to controls at 24 degrees C or -80 degrees C. (in vivo transfection D(0) 2.19 +/- 0.21 at 24 degrees C, D(0) 2.10 +/- 0.07 at -80 degrees C compared to control D(0) 1.56 +/- 0.06 or 1.66 +/- 0.04, P = 0.047 and 0.017 respectively; in vitro transfection D(0) 2.35 +/- 0.11 at 24 degrees C, D(0) 3.42 +/- 0.13 at -80 degrees C compared to D(0) 1.81 +/- 0.01 or 2.53 +/- 0.05, P = 0.0087 and 0.0026, respectively). Thus the MnSOD transgene product protects frozen marrow cells as well as marrow cells irradiated at 24 degrees C.  相似文献   
992.
Normal maize germplasm could be used to improve the grain yield of popcorn inbreds. Our first objective was to locate genetic factors associated with trait variation and make first assessment on the efficiency of advanced backcross quantitative trait locus (AB-QTL) analysis for the identification and transfer of favorable QTL alleles for grain yield components from the dent corn inbred. A second objective was to compare the detection of QTL in the BC2F2 population with results using F2:3 lines of the same parents. Two hundred and twenty selected BC2F2 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for six grain yield components under two environments, and genotyped by means of 170 SSR markers. Using composite interval mapping (CIM), a total of 19 significant QTL were detected. Eighteen QTL had favorable alleles contributed by the dent corn parent Dan232. Sixteen of these favorable QTL alleles were not in the same or near marker intervals with QTL for popping characteristics. Six QTL were also detected in the F2:3 population. Improved N04 could be developed from 210 and 208 families with higher grain weight per plant and/or 100-grain weight, respectively, and 35 families with the same or higher popping expansion volume than N04. In addition, near isogenic lines containing detected QTL (QTL-NILs) for grain weight per plant and/or 100-grain weight could be obtained from 12 families. Our study demonstrated that the AB-QTL method can be applied to identify and manipulate favorable QTL alleles from normal corn inbreds and combine QTL detection and popcorn breeding efficiently.  相似文献   
993.
994.
Articular cartilage is a biological weight-bearing tissue covering the bony ends of articulating joints. Negatively charged proteoglycan (PG) in articular cartilage is one of the main factors that govern its compressive mechanical behavior and swelling phenomenon. PG is nonuniformly distributed throughout the depth direction, and its amount or distribution may change in the degenerated articular cartilage such as osteoarthritis. In this paper, we used a 50 MHz ultrasound system to study the depth-dependent strain of articular cartilage under the osmotic loading induced by the decrease of the bathing saline concentration. The swelling-induced strains under the osmotic loading were used to determine the layered material properties of articular cartilage based on a triphasic model of the free-swelling. Fourteen cylindrical cartilage-bone samples prepared from fresh normal bovine patellae were tested in situ in this study. A layered triphasic model was proposed to describe the depth distribution of the swelling strain for the cartilage and to determine its aggregate modulus H(a) at two different layers, within which H(a) was assumed to be linearly dependent on the depth. The results showed that H(a) was 3.0+/-3.2, 7.0+/-7.4, 24.5+/-11.1 MPa at the cartilage surface, layer interface, and deep region, respectively. They are significantly different (p<0.01). The layer interface located at 70%+/-20% of the overall thickness from the uncalcified-calcified cartilage interface. Parametric analysis demonstrated that the depth-dependent distribution of the water fraction had a significant effect on the modeling results but not the fixed charge density. This study showed that high-frequency ultrasound measurement together with triphasic modeling is practical for quantifying the layered mechanical properties of articular cartilage nondestructively and has the potential for providing useful information for the detection of the early signs of osteoarthritis.  相似文献   
995.
Xie Z  Niu G  Li R  Liu G  Tan H 《Current microbiology》2007,55(6):537-542
Nikkomycins are highly potent inhibitors of chitin synthase. The nikkomycin biosynthetic gene cluster has been cloned from Streptomyces asochromogenes. Two cytochrome P450 monooxygenase genes (sanQ, sanH) and one ferredoxin gene (sanI) were found in the cluster. It was reported that SanQ is involved in the hydroxylation of l-His, a key step in 4-formyl-4-imidazolin-2-one base biosynthesis. Here, we have studied the function of sanH and sanI. Disruption of sanH abolished the production of nikkomycin X and Z, but it accumulated one dominant component nikkomycin Lx, which is the nikkomycin X analog lacking the hydroxy group at the pyridyl residue. The sanI disruption mutant accumulated predominantly nikkomycin Lx in addition to nikkomycin X and Z. The nikkomycin production profile of the sanH and sanI double disruption mutant was the same as that of the sanH disruption mutant. These results confirmed that SanH is essential for the hydroxylation of pyridyl residue in nikkomycin biosynthesis of S. ansochromogenes and first demonstrated that SanI is an effective electron donor for SanH, but not for SanQ in vivo.  相似文献   
996.
Bacillus nematocida is a Gram-positive bacterium capable of killing nematodes. Our recent studies identified an extracellular serine protease Bace16 in B. nematocida as a candidate of pathogenic factor in the infection against nematodes, which displayed a high similarity with the serine protease family subtilisin BPN’, and the MEROPS ID is S08.034. To further confirm the roles that bace16 played in the mechanism of nematocidal pathogenesis, recombinant mature Bace16 (rm-Bace16) was expressed in Escherichia coli strain BL21 using pET-30 vector system. Bioassay experiments demonstrated that the purified recombinant protease had the ability to degrade nematode cuticles and kill nematodes. In addition, a bace16 knockout mutant of B. nematocida constructed by homologous recombination showed considerably lower proteolytic activity and less than 50% nematocidal activity than the wild-type strain. These results confirmed that Bace16 could serve as an important virulence factor during the infectious process. Qiuhong Niu and Xiaowei Huang contributed equally to this work.  相似文献   
997.
Methane monooxygenase hydroxylase was purified by chromatography and characterized by electrophoresis and spectroscopy. The molecular mass of hydroxylase was 201.3 KDa as determined by gel filtration, whereas the total molecular mass was 234 KDa as judged by SDS-PAGE. Structure study indicated that the enzyme is a homodimer structure, consisting of three subunits, designated alpha, beta, and gamma, with molecular masses of 58 KDa, 36 KDa, and 23 KDa respectively. IEF analysis indicated that the enzyme has a pI of 5.2. The UV-Vis spectrum of hydroxylase revealed an absorption peak near 281 nm and a weak shoulder peak around 395 nm-420 nm, and a fluorescence spectrum revealed an emission peak at 341.3 nm. Circular dichroism measurement indicated that hydroxylase mainly consists of alpha-helical regions. Finally, phylogenetic analysis indicated that this strain is very close to Methylosinus trichosporium OB3b.  相似文献   
998.
Serum response factor micromanaging cardiogenesis   总被引:3,自引:0,他引:3  
  相似文献   
999.
1000.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofacial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitivity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin responsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobilization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号