首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8865篇
  免费   695篇
  国内免费   835篇
  2024年   31篇
  2023年   150篇
  2022年   330篇
  2021年   597篇
  2020年   388篇
  2019年   441篇
  2018年   445篇
  2017年   330篇
  2016年   415篇
  2015年   585篇
  2014年   662篇
  2013年   693篇
  2012年   846篇
  2011年   738篇
  2010年   462篇
  2009年   391篇
  2008年   427篇
  2007年   377篇
  2006年   323篇
  2005年   271篇
  2004年   217篇
  2003年   183篇
  2002年   151篇
  2001年   106篇
  2000年   114篇
  1999年   107篇
  1998年   84篇
  1997年   86篇
  1996年   56篇
  1995年   56篇
  1994年   71篇
  1993年   36篇
  1992年   38篇
  1991年   33篇
  1990年   25篇
  1989年   32篇
  1988年   16篇
  1987年   16篇
  1986年   12篇
  1985年   20篇
  1984年   6篇
  1983年   8篇
  1982年   7篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1975年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
Pathological bone destruction (osteolysis) is a hallmark of many bone diseases including tumor metastasis to bone, locally osteolytic giant cell tumor (GCT) of bone, and Paget's disease. Paclitaxel is frequently prescribed in the treatment of several malignant tumors where it has been shown to exert beneficial effects on bone lesions. However, the mechanism(s) through which paclitaxel regulates osteoclast formation and function remain ill defined. In the present study, we demonstrate that paclitaxel dose-dependently inhibits receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis in both RAW264.7 cells and mouse bone marrow macrophage (BMM) systems. In addition, paclitaxel treatment reduces the bone resorptive activity of human osteoclasts derived from GCT of bone, and attenuates lipopolysaccharide (LPS)-induced osteolysis in a mouse calvarial model. Complementary cellular and biochemical analyses revealed that paclitaxel induces mitotic arrest of osteoclastic precursor cells. Furthermore, luciferase reporter gene assays and western blot analysis indicate that paclitaxel modulates key RANKL-induced activation pathways that are essential to osteoclast formation including NF-κB and ERK. Collectively, our findings demonstrate a role for paclitaxel in the regulation of osteoclast formation and function and uncover potential mechanism(s) through which paclitaxel alleviates pathological osteolysis.  相似文献   
972.
The development of economical and high-throughput gene synthesis technology has been hampered by the high occurrence of errors in the synthesized products, which requires expensive labor and time to correct. Here, we describe an error correction reaction (ECR), which employs Surveyor, a mismatch-specific DNA endonuclease, to remove errors from synthetic genes. In ECR reactions, errors are revealed as mismatches by re-annealing of the synthetic gene products. Mismatches are recognized and excised by a combination of mismatch-specific endonuclease and 3'→5' exonuclease activities in the reaction mixture. Finally, overlap extension polymerase chain reaction (OE-PCR) re-assembles the resulting fragments into intact genes. The process can be iterated for increased fidelity. With two iterations, we were able to reduce errors in synthetic genes by >16-fold, yielding a final error rate of ~1 in 8700 bp.  相似文献   
973.
974.
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that infects pigs and sporadically causes serious infections in humans. Two recent large-scale outbreaks of human streptococcal toxic-shock-like syndrome with high mortality occurred in China, posing new challenges for global public health. However, the global regulation of the virulence of epidemic SS2 isolates lacks a systematic understanding. In this study, we performed a mutational and functional analysis of an SS2 two-component system that is orthologous to the VirR/VirS regulatory system of Clostridium perfringens. An isogenic knockout mutant of VirR/VirS (ΔvirRS) was found to exhibit marked phenotypic changes, including the formation of shorter chains and thinner capsular walls, more easily cleared in whole blood, and decreased oxidative stress tolerance. Furthermore, the ΔvirRS mutant was greatly attenuated in a mouse model. Comparative proteome analysis of the expression profiles of the wild-type strain with the ΔvirRS mutant allowed us to identify 72 proteins that are differentially expressed in the absence of the VirR/VirS system and that are directly responsible for the pleiotropic phenotype of the ΔvirRS mutant.  相似文献   
975.
976.
Wu C  Ma SS  Ge JF  Wang YY  Tian HN  Liu XB  Zhang B  Liu FM  Zhang XK  Li QJ 《Gene》2012,499(2):347-351
GalNAc-T14 was identified as a novel IGFBP-3 binding partner in previous studies. Here, we furtherly confirmed the interaction between them by confocal microscopy, and identified the binding domain and probable interaction sites of GalNAc-T14 with IGFBP-3. The result of subcellular localization indicated that GalNAc-T14 was distributed in the cytosol, whereas IGFBP-3 existed in the cytosol and nucleolus. Confocal analyses demonstrated that IGFBP-3 and GalNAc-T14 colocalized in the cytosol. The result from yeast two hybrid assay showed that the C terminus of GalNAc-T14 (408-552aa) was essential for the interaction between GalNAc-T14 and IGFBP-3, especially Tyr(408), Pro(409), and Glu(410) of GalNAc-T14 may play key roles in the interaction with IGFBP-3. In conclusion, these studies demonstrated that IGFBP-3 and GalNAc-T14 are colocalized in MCF-7 cells and confirmed the interaction between IGFBP-3 and GalNAc-T14. This interaction may play an important role in the functional regulation of IGFBP-3.  相似文献   
977.
978.
Platelet aggregation, secretion and thrombus formation play a critical role in primary hemostasis to prevent excessive blood loss. On the other hand, uncontrolled platelet activation leads to pathological thrombus formation resulting in myocardial infarction or stroke. Stimulation of heterotrimeric G-proteins by soluble agonists or immunoreceptor tyrosine based activation motif-coupled receptors that interact with immobilized ligands such as the collagen receptor glycoprotein (GP) VI lead to the activation of phospholipases that cleave membrane phospholipids to generate soluble second messengers. Platelets contain the phospholipases (PL) D1 and D2 which catalyze the hydrolysis of phosphatidylcholine to generate the second messenger phosphatidic acid (PA). The production of PA is abrogated by primary alcohols that have been widely used for the analysis of PLD-mediated processes. However, it is not clear if primary alcohols effectively reduce PA generation or if they induce PLD-independent cellular effects. In the present study we made use of the specific PLD inhibitor 5-fluoro-2-indolyl des-chlorohalopemide (FIPI) and show for the first time, that FIPI enhances platelet dense granule secretion and aggregation of human platelets. Further, FIPI has no effect on cytosolic Ca(2+) activity but needs proper Rho kinase signaling to mediate FIPI-induced effects on platelet activation. Upon FIPI treatment the phosphorylation of the PKC substrate pleckstrin was prominently enhanced suggesting that FIPI affects PKC-mediated secretion and aggregation in platelets. Similar effects of FIPI were observed in platelets from mouse wild-type and Pld1(-/-) mice pointing to a new role for PLD2 as a negative regulator of platelet sensitivity.  相似文献   
979.
An increasing number of tissue banks have begun to focus on gamma irradiation and freeze-thaw in the reconstruction of anterior cruciate ligaments using allografts. The purpose of this study was to evaluate the biomechanical properties of human tendons after exposure to gamma radiation and repeated freeze-thaw cycles and to compare them with fresh specimens. Forty flexor digitorum superficialis tendons were surgically procured from five fresh cadavers and divided into four groups: fresh tendon, gamma irradiation, freeze-thaw and gamma irradiation+freeze-thaw. The dose of gamma irradiation was 25 kGy. Each freeze-thaw cycle consisted of freezing at -80 °C for 7 day and thawing at 25 °C for 6 h. These tendons underwent 4 freeze-thaw cycles. Biomechanical properties were analyzed during load-to-failure testing. The fresh tendons were found to be significantly different in ultimate load, stiffness and ultimate stress relative to the other three groups. The tendons of the gamma+freeze-thaw group showed a significant decrease in ultimate load, ultimate stress and stiffness compared with the other three groups. Gamma irradiation and repeated freezing-thawing (4 cycles) can change the biomechanical properties. However, no significant difference was found between these two processes on the effect of biomechanical properties. It is recommended that gamma irradiation (25 kGy) and repetitive freeze-thaw cycles (4 cycles) should not be adopted in the processing of the allograft tendons.  相似文献   
980.
Cell death genes are essential for apoptosis and other cellular events, but their nonapoptotic functions are not well understood. The midbody is an important cytokinetic structure required for daughter cell abscission, but its fate after cell division remains elusive in metazoans. In this paper, we show through live-imaging analysis that midbodies generated by Q cell divisions in Caenorhabditis elegans were released to the extracellular space after abscission and subsequently internalized and degraded by the phagocyte that digests apoptotic Q cell corpses. We further show that midbody degradation is defective in apoptotic cell engulfment mutants. Externalized phosphatidylserine (PS), an engulfment signal for corpse phagocytosis, exists on the outer surface of the midbody, and inhibiting PS signaling delayed midbody clearance. Thus, our findings uncover a novel function of cell death genes in midbody internalization and degradation after cell division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号