首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9266篇
  免费   623篇
  国内免费   628篇
  2024年   20篇
  2023年   94篇
  2022年   216篇
  2021年   453篇
  2020年   314篇
  2019年   378篇
  2018年   370篇
  2017年   276篇
  2016年   352篇
  2015年   569篇
  2014年   668篇
  2013年   730篇
  2012年   815篇
  2011年   774篇
  2010年   449篇
  2009年   416篇
  2008年   473篇
  2007年   400篇
  2006年   363篇
  2005年   305篇
  2004年   260篇
  2003年   238篇
  2002年   187篇
  2001年   174篇
  2000年   151篇
  1999年   141篇
  1998年   104篇
  1997年   95篇
  1996年   84篇
  1995年   72篇
  1994年   82篇
  1993年   66篇
  1992年   71篇
  1991年   66篇
  1990年   66篇
  1989年   51篇
  1988年   32篇
  1987年   35篇
  1986年   22篇
  1985年   27篇
  1984年   10篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Zheng JS  Xia JH  He SP  Wang D 《Biochemical genetics》2005,43(5-6):307-320
Understanding the population genetic structure is a prerequisite for conservation of a species. The degree of genetic variability characteristic of the mitochondrial DNA control region has been widely exploited in studies of population genetic structure and can be useful in identifying meaningful population subdivisions. To estimate the genetic profile of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), an endangered freshwater population endemic to China, the complete mtDNA control region was examined in 39 individuals belonging to seven different stocks inhabiting the middle and lower reaches of the Yangtze River. Very low genetic diversity was found (nucleotide diversity 0.0011± 0.0002 and haplotypic diversity 0.65± 0.05). The mtDNA genetic pattern of the Yangtze population appears to indicate a founder event in its evolutionary history and to support the marine origin for this population. Analyses by Fst and Φst yielded statistically significant population genetic structure (Fst = 0.44, P < 0.05; Φst = 0.36, P < 0.05). These results may have significant implications for the management and conservation of the Yangtze finless porpoise in the future.  相似文献   
962.
963.
Ding Z  Lee GI  Liang X  Gallazzi F  Arunima A  Van Doren SR 《Biochemistry》2005,44(30):10119-10134
A net increase in the backbone rigidity of the kinase-interacting FHA domain (KI-FHA) from the Arabidopsis receptor kinase-associated protein phosphatase (KAPP) accompanies the binding of a phosphoThr peptide from its CLV1 receptor-like kinase partner, according to (15)N NMR relaxation at 11.7 and 14.1 T. All of the loops of free KI-FHA display evidence of nanosecond-scale motions. Many of these same residues have residual dipolar couplings that deviate from structural predictions. Binding of the CLV1 pT868 peptide seems to reduce nanosecond-scale fluctuations of all loops, including half of the residues of recognition loops. Residues important for affinity are found to be rigid, i.e., conserved residues and residues of the subsite for the key pT+3 peptide position. This behavior parallels SH2 and PTB domain recognition of pTyr peptides. PhosphoThr peptide binding increases KI-FHA backbone rigidity (S(2)) of three recognition loops, a loop nearby, seven strands from the beta-sandwich, and a distal loop. Compensating the trend of increased rigidity, binding enhances fast mobility at a few sites in four loops on the periphery of the recognition surface and in two loops on the far side of the beta-sandwich. Line broadening evidence of microsecond- to millisecond-scale fluctuations occurs across the six-stranded beta-sheet and nearby edges of the beta-sandwich; this forms a network connected by packing of interior side chains and H-bonding. A patch of the slowly fluctuating residues coincides with the site of segment-swapped dimerization in crystals of the FHA domain of human Chfr. Phosphopeptide binding introduces microsecond- to millisecond-scale fluctuations to more residues of the long 8/9 recognition loop of KI-FHA. The rigidity of this FHA domain appears to couple as a whole to pThr peptide binding.  相似文献   
964.
Ding S  Shapiro R  Geacintov NE  Broyde S 《Biochemistry》2005,44(44):14565-14576
The drug Premarin is the most widely used formula for hormone replacement therapy. However, long-term exposure to estrogens from the Premarin drug increases the risk of breast cancer. Equilin and equilenin, major components of Premarin, are predominantly metabolized to 4-hydroxyequilenin (4-OHEN). The quinoids produced by 4-OHEN oxidation react with dG, dA, and dC to form unusual stable cyclic bulky adducts, with four stereoisomers identified for each base adduct. The 4-OHEN-dC adducts are most predominant. They are mutagenic in vitro and have been found in human tumor tissue. We have carried out molecular modeling and molecular dynamics simulations to investigate structures and thermodynamics of the four 4-OHEN-dC stereoisomeric adducts in DNA duplexes. Our results show that the structure of each stereoisomer adduct in duplex DNA is specifically governed by its unique stereochemistry. The bulky adducts, with an obstructed Watson-Crick edge and an equilenin ring system near perpendicular to the damaged cytosine, are located in the B-DNA major or minor groove, with the modified cytosine in the syn or anti conformation, respectively. The DNA duplex structures are distorted, in terms of Watson-Crick pairing at and near the lesion, stacking interactions, and groove dimensions. Stereochemistry determines the orientation of the equilenin rings with respect to the 5'- to 3'-direction of the modified strand, as well as the positioning of the equilenin moiety's methyl and hydroxyl groups for each stereoisomer. The unusual structures and the stereochemical effects underlie their biological processing as miscoding DNA lesions whose mutagenic properties may contribute to breast cancer.  相似文献   
965.
966.
Ding H  Xu Y  Chen Q  Dai H  Tang Y  Wu J  Shi Y 《Biochemistry》2005,44(8):2790-2799
Small ubiquitin-related modifier SUMO-3 is a member of a growing family of ubiquitin-like proteins (Ubls). So far, four isoforms of SUMO have been identified in humans. It is generally known that SUMO modification regulates protein localization and activity. Previous structure and function studies have been mainly focused on SUMO-1. The sequence of SUMO-3 is 46% identical with that of SUMO-1; nevertheless, functional heterogeneity has been found between the two homologues. Here we report the solution structure of SUMO-3 C47S (residues 14-92) featuring the beta-beta-alpha-beta-beta-alpha-beta ubiquitin fold. Structural comparison shows that SUMO-3 C47S resembles ubiquitin more than SUMO-1. On the helix-sheet interface, a strong hydrophobic interaction contributes to formation of the globular and compact fold. A Gly-Gly motif at the C-terminal tail, extending away from the core structure, is accessible to enzymes and substrates. In vivo, SUMO modification proceeds via a multistep pathway, and Ubc9 plays an indispensable role as the SUMO conjugating enzyme (E2) in this process. To develop a better understanding of SUMO-3 conjugation, the Ubc9 binding surface on SUMO-3 C47S has been detected by chemical shift perturbation using NMR spectroscopy. The binding site mainly resides on the hydrophilic side of the beta-sheet. Negatively charged and hydrophobic residues of this region are highly or moderately conserved among SUMO family members. Notably, the negatively charged surface of SUMO-3 C47S is highly complementary in its electrostatic potentials and hydrophobicity to the positively charged surface of Ubc9. This work indicates dissimilarities between SUMO-3 and SUMO-1 in tertiary structure and provides insight into the specific interactions of SUMO-3 with its modifying enzyme.  相似文献   
967.
Chemokines and chemokine receptors are required for T cell trafficking and migration. Recent evidence shows that sphingosine 1-phosphate (S1P) and S1PRs are also important for some aspects of T cell migration, but how these two important receptor-ligand systems are integrated and coregulated is not known. In this study, we have investigated CCL19-CCR7 and CXCL12-CXCR4-driven migration of both splenic and peripheral lymph node (PLN) nonactivated and naive T cells, and used both S1P and the S1PR ligand, FTY720, to probe these interactions. The results demonstrate that splenic T cell migration to CCL19 or CXCL12 is enhanced by, but does not require, S1PR stimulation. In contrast, PLN T cell migration to CXCL12, but not CCL19, requires both chemokine and S1PR stimulation, and the requirement for dual receptor stimulation is particularly important for steps involving transendothelial migration. The results also demonstrate that: 1) splenic and PLN nonactivated and naive T cells use different molecular migration mechanisms; 2) CCR7 and CXCR4 stimulation engage different migration mechanisms; and 3) S1P and FTY720 have distinct S1PR agonist and antagonist properties. The results have important implications for understanding naive T cell entry into and egress from peripheral lymphoid organs, and we present a model for how S1P and chemokine receptor signaling may be integrated within a T cell.  相似文献   
968.
C3d can function as a molecular adjuvant by binding CD21 and thereby enhancing B cell activation and humoral immune responses. However, recent studies suggest both positive and negative roles for C3d and the CD19/CD21 signaling complex in regulating humoral immunity. To address whether signaling through the CD19/CD21 complex can negatively regulate B cell function when engaged by physiological ligands, diphtheria toxin (DT)-C3d fusion protein and C3dg-streptavidin (SA) complexes were used to assess the role of CD21 during BCR-induced activation and in vivo immune responses. Immunization of mice with DT-C3d3 significantly reduced DT-specific Ab responses independently of CD21 expression or signaling. By contrast, SA-C3dg tetramers dramatically enhanced anti-SA responses when used at low doses, whereas 10-fold higher doses did not augment immune responses, except in CD21/35-deficient mice. Likewise, SA-C3dg (1 microg/ml) dramatically enhanced BCR-induced intracellular calcium concentration ([Ca2+]i) responses in vitro, but had no effect or inhibited [Ca2+]i responses when used at 10- to 50-fold higher concentrations. SA-C3dg enhancement of BCR-induced [Ca2+]i responses required CD21 and CD19 expression and resulted in significantly enhanced CD19 and Lyn phosphorylation, with enhanced Lyn/CD19 associations. BCR-induced CD22 phosphorylation and Src homology 2 domain-containing protein tyrosine phosphatase-1/CD22 associations were also reduced, suggesting abrogation of negative regulatory signaling. By contrast, CD19/CD21 ligation using higher concentrations of SA-C3dg significantly inhibited BCR-induced [Ca2+]i responses and inhibited CD19, Lyn, CD22, and Syk phosphorylation. Therefore, C3d may enhance or inhibit Ag-specific humoral immune responses through both CD21-dependent and -independent mechanisms depending on the concentration and nature of the Ag-C3d complexes.  相似文献   
969.
Group IIA secretory phospholipase A2 (sPLA2) is an acute-phase protein mediating decreased plasma HDL cholesterol and increased atherosclerosis. This study investigated the impact of macrophage-specific sPLA2 overexpression on lipoprotein metabolism and atherogenesis. Macrophages from sPLA2 transgenic mice have 2.5 times increased rates of LDL oxidation (thiobarbituric acid-reactive substances formation) in vitro (59 +/- 5 vs. 24 +/- 4 nmol malondialdehyde/mg protein; P < 0.001) dependent on functional 12/15-lipoxygenase (12/15-LO). Low density lipoprotein receptor-deficient (LDLR-/-) mice were transplanted with bone marrow from either sPLA2 transgenic mice (sPLA2--> LDLR-/-; n = 19) or wild-type C57BL/6 littermates (C57 BL/6-->LDLR-/-; n = 19) and maintained for 8 weeks on chow and then for 9 weeks on a Western-type diet. Plasma sPLA2 activity and plasma lipoprotein profiles were not significantly different between sPLA2-->LDLR-/- and C57BL/6-->LDLR-/- mice. Aortic root atherosclerosis was increased by 57% in sPLA2-->LDLR-/- mice compared with C57BL/6-->LDLR-/- controls (P < 0.05). Foam cell formation in vitro and in vivo was increased significantly. Urinary, plasma, and aortic levels of the isoprostane 8,12-iso-iPF2alpha-VI and aortic levels of 12/15-LO reaction products were each significantly higher (P < 0.001) in sPLA2-->LDLR-/- compared with C57BL/6-->LDLR-/- mice, indicating significantly increased in vivo oxidative stress in sPLA2--> LDLR-/-. These data demonstrate that macrophage-specific overexpression of human sPLA2 increases atherogenesis by directly modulating foam cell formation and in vivo oxidative stress without any effect on systemic sPLA2 activity and lipoprotein metabolism.  相似文献   
970.
Liu Y  Chen GS  Zhang HY  Song HB  Ding F 《Carbohydrate research》2004,339(9):1649-1654
The crystallographic structure of the complex formed by beta-cyclodextrin with 1,10-phenanthroline has been studied by X-ray diffraction. The result shows that the complex adopts an uncommon 2:3 stoichiometry in solid state, that is, every complex unit contains three 1,10-phenanthroline molecules and two beta-cyclodextrin molecules, where two 1,10-phenanthroline molecules individually occupy two cyclodextrin cavities, and the third guest molecule is located in the interstitial space between two head-to-head cyclodextrin molecules. The intermolecular hydrogen bonds between the adjacent complex units further link these individual monomers to a channel-type assembly. Furthermore, 1H and 2D NMR spectroscopy has been employed to investigate the inclusion behavior between the host beta-cyclodextrin and guest 1,10-phenanthroline in aqueous solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号