全文获取类型
收费全文 | 9305篇 |
免费 | 619篇 |
国内免费 | 636篇 |
专业分类
10560篇 |
出版年
2024年 | 26篇 |
2023年 | 101篇 |
2022年 | 245篇 |
2021年 | 454篇 |
2020年 | 314篇 |
2019年 | 378篇 |
2018年 | 370篇 |
2017年 | 276篇 |
2016年 | 352篇 |
2015年 | 569篇 |
2014年 | 668篇 |
2013年 | 730篇 |
2012年 | 815篇 |
2011年 | 774篇 |
2010年 | 449篇 |
2009年 | 416篇 |
2008年 | 473篇 |
2007年 | 400篇 |
2006年 | 363篇 |
2005年 | 305篇 |
2004年 | 260篇 |
2003年 | 238篇 |
2002年 | 187篇 |
2001年 | 174篇 |
2000年 | 151篇 |
1999年 | 141篇 |
1998年 | 104篇 |
1997年 | 95篇 |
1996年 | 84篇 |
1995年 | 72篇 |
1994年 | 82篇 |
1993年 | 66篇 |
1992年 | 71篇 |
1991年 | 66篇 |
1990年 | 66篇 |
1989年 | 51篇 |
1988年 | 32篇 |
1987年 | 35篇 |
1986年 | 22篇 |
1985年 | 27篇 |
1984年 | 10篇 |
1983年 | 16篇 |
1982年 | 8篇 |
1981年 | 4篇 |
1980年 | 6篇 |
1979年 | 6篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1972年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
The TNFalpha receptor super-family consists of several members sharing a sequence homology in a unique function domain, the death domain, which is located in the intracellular portion of the receptor. These so-called death receptors, including Fas, TNF-R1 and TRAIL-R1/TRAIL-R2, are expressed on hepatocytes. When stimulated by their ligands, FasL, TNFalpha or TRAIL, respectively, the death receptors can activate multiple death domain-initiated apoptosis programs, including both extrinsic and intrinsic pathways. A cascade of caspases is activated, which cleave proteins important for the cell structure and function. Activation of the intrinsic pathway also leads to mitochondrial release of several apoptotic proteins and mitochondrial dysfunction, which kill the cell through both caspase-dependent and caspase-independent mechanisms. Death receptor-induced hepatocyte apoptosis contributes to the development of a number of liver diseases, including viral hepatitis, inflammatory hepatitis, Wilson's disease, alcoholic liver disease, endotoxiemia-induced liver failure and ischemia/reperfusion-induced liver damage. This article comprehensively reviews the mechanisms of induction and regulation of death receptor-initiated apoptosis in hepatocytes, examines how these molecular events affect our understanding of the pathogenesis of these diseases and further discusses the potential therapeutic application of the knowledge. We hope we can provide a cohesive and integrated perspective on the many aspects of these complicated processes. 相似文献
922.
Tabtoxin resistance protein (TTR) is an enzyme that catalyzes the acetylation of tabtoxin rendering tabtoxin-producing pathogens tolerant to their own phytotoxins. According to the structure based detoxification mechanism of TTR, three site-directed mutants Y141F, D130N and Y141F-D130N were constructed and overexpressed in E. coli. The products were then purified and their properties were analyzed by CD and DLS. Crystallization trials of two mutants Y141F andY141F-D130N were preformed. 相似文献
923.
Huang Y Ding ZH Liu JK 《Zeitschrift für Naturforschung. C, Journal of biosciences》2003,58(5-6):347-350
A new highly oxygenated flavone, namely 8,3'-dihydroxy-5,6,7,4'-tetramethoxyflavone (1), together with other five known flavonoids were isolated from the tropical plant Vernonia saligna. Their structures were established on the basis of spectral (MS, IR, UV, 1D & 2D NMR) measurement and chemical evidence. 相似文献
924.
Zhong Q Bollag RJ Dransfield DT Gasalla-Herraiz J Ding KH Min L Isales CM 《Peptides》2000,21(9):1427-1432
Glucose-dependent insulinotropic peptide (GIP) potentiates glucose-induced insulin secretion. In addition, GIP has vasoconstrictive or vasodilatory properties depending on the vascular bed affected. In order to assess whether this effect could be related to differences in GIP receptor expression, several different endothelial cell types were examined for GIP receptor expression. GIP receptor splice variants were detected and varied depending on the endothelial cell type. Furthermore, stimulation of these cells with GIP led to cell type dependent differences in activation of the calcium and cAMP signaling pathways. To our knowledge this is the first physiological characterization of receptors for GIP in endothelial cells. 相似文献
925.
Tsuchida S Yanagi S Inatome R Ding J Hermann P Tsujimura T Matsui N Yamamura H 《Journal of biochemistry》2000,127(2):321-327
Syk protein-tyrosine kinase (PTK) has been implicated in a variety of hematopoietic cell responses including immunoreceptor signaling. However, so far, there has been no evidence of the expression of Syk or Syk-related PTK in non-hematopoietic tissues. In this study, we have purified from blood cell-depleted rat liver a 72-kDa cytoplasmic PTK which shows cross-reactivity with anti-Syk antibody. Partial amino acid sequence analysis revealed that this 72-kDa PTK is identical to Syk. Immunohistochemical and RT-PCR analyses demonstrated that Syk is expressed in human hepatocytes and two rat liver-derived cell lines, JTC-27 and RLC-16. Furthermore, Syk is significantly tyrosine-phosphorylated in response to angiotensin II in JTC-27 cells, and angiotensin II-induced MAP kinase activation is blocked by the treatment of cells with a Syk-selective inhibitor, piceatannol. These results suggest that Syk plays an important role in signaling events of hepatocytes, such as signaling steps leading to MAP kinase activation by G-protein-coupled receptors. This is the first report of the expression of Syk in non-hematopoietic tissue. 相似文献
926.
Geraghty DS Ding M Heintz NH Pederson DS 《The Journal of biological chemistry》2000,275(24):18011-18021
The Cdc7p protein kinase in the budding yeast Saccharomyces cerevisiae is thought to help trigger DNA replication by modifying one or more of the factors that assemble at replication origins (ARSs). To investigate events catalyzed by Cdc7p, we compared the structure of replication origins in cells containing conditional mutations in Cdc7p and Cdc8p, a thymidylate kinase that is required for DNA synthesis. High resolution genomic footprinting indicated that the presumptive lagging strand template in ARS1 became highly sensitive to KMnO(4) modification after the CDC7 execution point. These results suggested that Cdc7p triggers DNA unwinding. The transition from late G(1) phase to the CDC7 execution point and from the CDC7 to the CDC8 execution points was accompanied by small but ARS-dependent changes in DNA topology. These results suggested that DNA unwinding before the CDC8 execution point either is highly localized or that the torsional stress associated with initial DNA unwinding is minimized by compensatory protein-DNA structural changes. The ARS DNA structural attributes evident in cells blocked at the CDC8 execution point were also evident in alpha-factor-blocked, G(1) phase cells containing the CDC7 bypass mutant mcm5/cdc46-bob1. This result strongly suggests that the structural changes during the transition from the CDC7 to CDC8 execution points depend on the Cdc7p protein kinase and involve alteration of the minichromosome maintenance protein complex. 相似文献
927.
Ding Z Yang X Pater A Tang SC 《Biochemical and biophysical research communications》2000,270(2):415-420
Recent studies have indicated that induction of apoptosis is the primary cytotoxic mechanism of most cancer chemotherapeutic agents, and abnormalities in the control of apoptosis can affect the sensitivity of malignant cells to multiple drugs. Here, we treated cells with cisplatin and other apoptotic stimuli and found that multidrug-resistant (MDR) endocervical HEN-16-2/CDDP cells, compared with drug-sensitive parental cells, were significantly more resistant to apoptosis and exhibited decreased proteolytic activation of caspase-3. The latter was further demonstrated by decreased cleavage of its substrate poly(ADP-ribose) polymerase (PARP). Further, Western blot analysis showed that MDR HEN-16-2/CDDP cells had significantly higher levels of the apoptosis-inhibiting proteins BAG-1 p50 and p33 isoforms and Bcl-X(L). This study provided the first evidence that overexpression of antiapoptotic BAG-1 p50 and p33 and Bcl-X(L) may cause resistance to apoptosis through reduction of caspase-3 activity in human cervical cells having an MDR phenotype. 相似文献
928.
Xie H Ding FX Schreiber D Eng G Liu SF Arshava B Arevalo E Becker JM Naider F 《Biochemistry》2000,39(50):15462-15474
The Ste2p receptor for alpha-factor, a tridecapeptide mating pheromone of the yeast Saccharomyces cerevisiae, belongs to the G protein-coupled family of receptors. In this paper we report on the synthesis of peptides corresponding to five of the seven transmembrane domains (M1-M5) and two homologues of the sixth transmembrane domain corresponding to the wild-type sequence and a mutant sequence found in a constitutively active receptor. The secondary structures of all new transmembrane peptides and previously synthesized peptides corresponding to domains 6 and 7 were assessed using a detailed CD analysis in trifluoroethanol, trifluoroethanol-water mixtures, sodium dodecyl sulfate micelles, and dimyristoyl phosphatidyl choline bilayers. Tryptophan fluorescence quenching experiments were used to assess the penetration of the membrane peptides into lipid bilayers. All peptides were predominantly (40-80%) helical in trifluoroethanol and most trifluoroethanol-water mixtures. In contrast, two of the peptides M3-35 (KKKNIIQVLLVASIETSLVFQIKVIFTGDNFKKKG) and M6-31 (KQFDSFHILLINleSAQSLLVPSIIFILAYSLK) formed stable beta-sheet structures in both sodium dodecyl sulfate micelles and DMPC bilayers. Polyacrylamide gel electrophoresis showed that these two peptides formed high molecular aggregates in the presence of SDS whereas all other peptides moved as monomeric species. The peptide (KKKFDSFHILLIMSAQSLLVLSIIFILAYSLKKKS) corresponding to the sequence in the constitutive mutant was predominantly helical under a variety of conditions, whereas the homologous wild-type sequence (KKKFDSFHILLIMSAQSLLVPSIIFILAYSLKKKS) retained a tendency to form beta-structures. These results demonstrate a connection between a conformational shift in secondary structure, as detected by biophysical techniques, and receptor function. The aggregation of particular transmembrane domains may also reflect a tendency for intermolecular interactions that occur in the membrane environment facilitating formation of receptor dimers or multimers. 相似文献
929.
Cui XL Jin WW Ding YX Alexander LD Hopfer U Douglas JG 《American journal of physiology. Cell physiology》2000,279(2):C403-C409
Previous work from this laboratorydemonstrated that arachidonic acid activates c-junNH2-terminal kinase (JNK) through oxidative intermediatesin a Ca2+-independent manner (Cui X and Douglas JG.Arachidonic acid activates c-jun N-terminal kinase throughNADPH oxidase in rabbit proximal tubular epithelial cells. ProcNatl Acad Sci USA 94: 3771-3776, 1997.). We now report thatJNK can also be activated via a Ca2+-dependent mechanism byagents that increase the cytosolic Ca2+ concentration(Ca2+ ionophore A23187, Ca2+-ATPaseinhibitor thapsigargin) or deplete intracellular Ca2+stores [intracellular Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(BAPTA)-AM]. The activation of JNK by BAPTA-AM occurs despite adecrease in cytosolic Ca2+ concentration as detected by theindicator dye fura 2, but appears to be related to Ca2+metabolism, because modification of BAPTA with two methyl groups increases not only the chelation affinity for Ca2+, butalso the potency for JNK activation. BAPTA-AM stimulates Ca2+ influx across the plasma membrane, and the resultinglocal Ca2+ increases are probably involved in activation ofJNK because Ca2+ influx inhibitors (SKF-96365, nifedipine)and lowering of the free extracellular Ca2+ concentrationwith EGTA reduce the BAPTA-induced JNK activation. 相似文献
930.