排序方式: 共有177条查询结果,搜索用时 15 毫秒
51.
Jiansen Lu Hong Guan Dan Wu Zhiqiang Hu Hongbo Zhang Huaji Jiang Jingyao Yu Ke Zeng Hongyu Li Haiyan Zhang Chenglong Pan Daozhang Cai Xiao Yu 《Journal of cellular and molecular medicine》2021,25(14):6664
Synovial macrophage polarization and inflammation are essential for osteoarthritis (OA) development, yet the molecular mechanisms and regulation responsible for the pathogenesis are still poorly understood. Here, we report that pseudolaric acid B (PAB) attenuated articular cartilage degeneration and synovitis during OA. PAB, a diterpene acid, specifically inhibited NF‐κB signalling and reduced the production of pro‐inflammatory cytokines, which further decreased M1 polarization and vessel formation. We further provide in vivo and in vitro evidences that PAB suppressed NF‐κB signalling by stabilizing PPARγ. Using PPARγ antagonist could abolish anti‐inflammatory effect of PAB and rescue the activation of NF‐κB signalling during OA. Our findings identify a previously unrecognized role of PAB in the regulation of OA and provide mechanisms by which PAB regulates NF‐κB signalling through PPARγ, which further suggest targeting synovial inflammation or inhibiting vessel formation at early stage could be an effective preventive strategy for OA. 相似文献
52.
Wu C Zhang W Mai K Xu W Zhong X 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2011,154(1):1-6
The expression patterns of different genes encoding antioxidant enzymes and heat shock proteins were investigated, in present study, by real-time quantitative PCR in the hepatopancreas of abalone Haliotis discus hannai fed with different levels of dietary zinc (6.69, 33.8, 710.6 and 3462.5 mg/kg) for 20 weeks. The antioxidant enzymes include Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase (CAT), mu-glutathione-s-transferase (mu-GST) and thioredoxin peroxidase (TPx). The results showed that the mRNA expression of these antioxidant enzymes increased and reached the maximum at the dietary zinc level of 33.8 mg/kg, and then dropped progressively. Expression levels of the heat shock proteins (HSP26, HSP70 and HSP90) firstly increased at 33.8 mg/kg dietary Zn level, and reached to the maximum at 710.6 mg/kg, then dropped at 3462.5 mg/kg (p<0.05). Excessive dietary Zn (710.6 and 3462.5 mg/kg) significantly increases the Zn content and significantly decreases the total antioxidant capacity (T-AOC) in hepatopancreas (p<0.05). These findings showed that dietary Zn (33.8 mg/kg) could highly trigger the expression levels of antioxidant enzymes and heat shock proteins, but excessive dietary Zn (710.6 and 3462.5 mg/kg) induces a high oxidative stress in abalone. 相似文献
53.
A novel method for measuring photosynthesis using delayed fluorescence of chloroplast 总被引:11,自引:0,他引:11
Photosynthesis is the most important chemical reaction in the world. The measurement of plant photosynthesis rate plays an important role in agriculture. Light-induced delayed fluorescence (DF) in plants is an intrinsic label of the efficiency of charge separation at P680 in photosystem II (PS II). In this paper, we have developed a biosensor that can accurately measure the plant photosynthesis ability by means of DF. Compared with common methods for measuring the photosynthesis rate based on consumption of CO2, the proposed technique can quantify the plant photosynthesis ability with less influence of the environment. The biosensor is an all-weather measuring instrument, it has its own illumination power and utilizes intrinsic DF as the measurement marker. The current investigation has revealed that, there is a good correspondence between the results measured by the biosensor and that by commercially available portable photosynthesis system under controlled conditions. We thus conclude that DF is an excellent marker for evaluating plant photosynthesis ability under its biological status with less interferences of the environment. 相似文献
54.
Chenglong Wang ;Guang Yang ;Zhaofeng Luo ;Hongmei Ding 《Acta biochimica et biophysica Sinica》2009,(4):335-340
In this study, we developed a systematic evolution of ligands by exponential enrichment (SELEX) method using a combination of magnetic beads immobilization and flow cytometric measurement. As an example, the selection of streptavidin-specific aptamers was performed. In this protocol, the conventional SELEX procedure was optimized, fiirst using magnetic beads for target immobilization to facilitate highly efficient separation of the binding single-stranded DNA (ssDNA) aptamers from the unbound ssDNAs, and second using flow cytometry and fluorescein labeling to monitor the enrichment. The sensitivity of flow cytometry was adequate for ssDNA quantification during the SELEX procedures. The streptavidin-specific aptamers obtained in this work can be used as tools for characterization of the occupancy of streptavidin-modified surfaces with biotinylated target molecules. The method described in the study is also generally applicable to target molecules other than streptavidin. 相似文献
55.
Baosheng Wu Chenguang Feng Chenglong Zhu Wenjie Xu Yuan Yuan Mingliang Hu Ke Yuan Yongxin Li Yandong Ren Yang Zhou Haifeng Jiang Qiang Qiu Wen Wang Shunping He Kun Wang 《Molecular biology and evolution》2021,38(6):2413
Endothermy is a typical convergent phenomenon which has evolved independently at least eight times in vertebrates, and is of significant advantage to organisms in extending their niches. However, how vertebrates other than mammals or birds, especially teleosts, achieve endothermy has not previously been fully understood. In this study, we sequenced the genomes of two billfishes (swordfish and sailfish), members of a representative lineage of endothermic teleosts. Convergent amino acid replacements were observed in proteins related to heat production and the visual system in two endothermic teleost lineages, billfishes and tunas. The billfish-specific genetic innovations were found to be associated with heat exchange, thermoregulation, and the specialized morphology, including elongated bill, enlarged dorsal fin in sailfish and loss of the pelvic fin in swordfish. 相似文献
56.
Jinggeng Zhou Shujing Wu Xin Chen Chenglong Liu Jen Sheen Libo Shan Ping He 《The Plant journal : for cell and molecular biology》2014,77(2):235-245
Pseudomonas syringae delivers a plethora of effector proteins into host cells to sabotage immune responses and modulate physiology to favor infection. The P. syringae pv. tomato DC3000 effector HopF2 suppresses Arabidopsis innate immunity triggered by multiple microbe‐associated molecular patterns (MAMP) at the plasma membrane. We show here that HopF2 possesses distinct mechanisms for suppression of two branches of MAMP‐activated MAP kinase (MAPK) cascades. In addition to blocking MKK5 (MAPK kinase 5) activation in the MEKK1 (MAPK kinase kinase 1)/MEKKs–MKK4/5–MPK3/6 cascade, HopF2 targets additional component(s) upstream of MEKK1 in the MEKK1–MKK1/2–MPK4 cascade and the plasma membrane‐localized receptor‐like cytoplasmic kinase BIK1 and its homologs. We further show that HopF2 directly targets BAK1, a plasma membrane‐localized receptor‐like kinase that is involved in multiple MAMP signaling. The interaction between BAK1 and HopF2 and between two other P. syringae effectors, AvrPto and AvrPtoB, was confirmed in vivo and in vitro. Consistent with BAK1 as a physiological target of AvrPto, AvrPtoB and HopF2, the strong growth defects or lethality associated with ectopic expression of these effectors in wild‐type Arabidopsis transgenic plants were largely alleviated in bak1 mutant plants. Thus, our results provide genetic evidence to show that BAK1 is a physiological target of AvrPto, AvrPtoB and HopF2. Identification of BAK1 as an additional target of HopF2 virulence not only explains HopF2 suppression of multiple MAMP signaling at the plasma membrane, but also supports the notion that pathogen virulence effectors act through multiple targets in host cells. 相似文献
57.
Inhibition of STAT3 Signaling Blocks the Anti-apoptotic Activity of IL-6 in Human Liver Cancer Cells
Yan Liu Pui-Kai Li Chenglong Li Jiayuh Lin 《The Journal of biological chemistry》2010,285(35):27429-27439
Interleukin-6 (IL-6) is a multifunctional cytokine, which may block apoptosis during inflammation to protect cells under very toxic conditions. However, IL-6 also activates STAT3 in many types of human cancer. Recent studies demonstrate that high levels of IL-6 are associated with hepatocellular carcinoma, the most common type of liver cancer. Here we reported that IL-6 promoted survival of human liver cancer cells through activating STAT3 in response to doxorubicin treatment. Endogenous IL-6 levels in SNU-449 cells were higher than in Hep3B cells. Meanwhile, SNU-449 cells were more resistant to doxorubicin than Hep3B cells. Addition of IL-6 induced STAT3 activation in Hep3B cells and led to protection against doxorubicin. In contrast, neutralizing IL-6 with anti-IL-6 antibody decreased survival of SNU-449 cells in response to doxorubicin. To elucidate the mechanism of the anti-apoptotic function of IL-6, we investigated if STAT3 mediated this drug resistance. Targeting STAT3 with STAT3 siRNA reduced the protection of IL-6 against doxorubicin-induced apoptosis, indicating that STAT3 signaling contributed to the anti-apoptotic effect of IL-6. Moreover, we further explored if a STAT3 small molecule inhibitor could abolish this anti-apoptotic effect. LLL12, a STAT3 small molecule inhibitor, blocked IL-6-induced STAT3 phosphorylation, resulting in attenuation of the anti-apoptotic activity of IL-6. Finally, neutralization of endogenous IL-6 with anti-IL-6 antibody or blockade of STAT3 with LLL12 lowered the recovery in SNU-449 cells after doxorubicin treatment. Therefore, our results demonstrated that targeting STAT3 signaling could interrupt the anti-apoptotic function of IL-6 in human liver cancer cells. 相似文献
58.
59.
Autocatalytic cleavage of human gamma-glutamyl transpeptidase is highly dependent on N-glycosylation at asparagine 95 总被引:1,自引:0,他引:1
West MB Wickham S Quinalty LM Pavlovicz RE Li C Hanigan MH 《The Journal of biological chemistry》2011,286(33):28876-28888
γ-Glutamyl transpeptidase (GGT) is a heterodimeric membrane enzyme that catalyzes the cleavage of extracellular glutathione and other γ-glutamyl-containing compounds. GGT is synthesized as a single polypeptide (propeptide) that undergoes autocatalytic cleavage, which results in the formation of the large and small subunits that compose the mature enzyme. GGT is extensively N-glycosylated, yet the functional consequences of this modification are unclear. We investigated the effect of N-glycosylation on the kinetic behavior, stability, and functional maturation of GGT. Using site-directed mutagenesis, we confirmed that all seven N-glycosylation sites on human GGT are modified by N-glycans. Comparative enzyme kinetic analyses revealed that single substitutions are functionally tolerated, although the N95Q mutation resulted in a marked decrease in the cleavage efficiency of the propeptide. However, each of the single site mutants exhibited decreased thermal stability relative to wild-type GGT. Combined mutagenesis of all N-glycosylation sites resulted in the accumulation of the inactive propeptide form of the enzyme. Use of N-glycosylation inhibitors demonstrated that binding of the core N-glycans, not their subsequent processing, is the critical glycosylation event governing the autocleavage of GGT. Although N-glycosylation is necessary for maturation of the propeptide, enzymatic deglycosylation of the mature wild-type GGT does not substantially impact either the kinetic behavior or thermal stability of the fully processed human enzyme. These findings are the first to establish that co-translational N-glycosylation of human GGT is required for the proper folding and subsequent cleavage of the nascent propeptide, although retention of these N-glycans is not necessary for maintaining either the function or structural stability of the mature enzyme. 相似文献