首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9285篇
  免费   831篇
  国内免费   34篇
  10150篇
  2023年   44篇
  2022年   110篇
  2021年   166篇
  2020年   115篇
  2019年   147篇
  2018年   199篇
  2017年   188篇
  2016年   270篇
  2015年   482篇
  2014年   492篇
  2013年   604篇
  2012年   733篇
  2011年   663篇
  2010年   434篇
  2009年   417篇
  2008年   576篇
  2007年   522篇
  2006年   460篇
  2005年   424篇
  2004年   394篇
  2003年   351篇
  2002年   324篇
  2001年   186篇
  2000年   168篇
  1999年   135篇
  1998年   81篇
  1997年   68篇
  1996年   53篇
  1995年   76篇
  1994年   44篇
  1993年   52篇
  1992年   86篇
  1991年   74篇
  1990年   79篇
  1989年   83篇
  1988年   80篇
  1987年   76篇
  1986年   64篇
  1985年   73篇
  1984年   52篇
  1983年   44篇
  1982年   34篇
  1980年   29篇
  1979年   47篇
  1978年   43篇
  1977年   29篇
  1976年   41篇
  1975年   32篇
  1974年   32篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.  相似文献   
952.
Dermal papilla (DP) cells play a regulatory role in hair growth, and also play a role in alopecia (hair loss). However, effects of taxol, which is a widely used chemotherapy drug, on DP cells remain unclear, despite that theoretically taxol can impact on DP cells to contribute to taxol-induced alopecia. To better understand pathophysiology of taxol-induced damage in DP cells, morphological and biochemical analyses were performed to check whether taxol can cause apoptosis in cultured DP cells or not. If it can, proteomics and bioinformatics analyses were then performed to investigate the protein networks which are impacted by the taxol treatment. Our data showed that taxol can cause apoptotic damage in DP cells in a concentration-dependant manner, as demonstrated by various apoptotic markers. Proteomic analysis on DP cells treated with the lowest apoptosis-inducible concentration of taxol revealed that taxol can affect expression of proteins involved in Ca2+-regulated biological processes, vesicles transport, protein folding, reductive detoxification, and biomolecules metabolism. Furthermore, bioinformatics analysis indicated that taxol can impact on multiple biological networks. Taken together, this biochemical, proteomics, and bioinformatics data may give an insight into pathophysiology of taxol-induced damage in DP cells and shed light on mechanisms underlying taxol-induced alopecia.  相似文献   
953.
Tu YH  Ho YH  Chuang YC  Chen PC  Chen CS 《PloS one》2011,6(12):e28197
Lactoferricin B (LfcinB) is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO) analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP) assays. Sixteen proteins were identified, and an E. coli interaction database (EcID) analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA) cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach.  相似文献   
954.
Nutritional interventions are important alternatives for reducing the prevalence of many chronic diseases. Soy is a good source of protein that contains isoflavones, including genistein and daidzein, and may alter the risk of obesity, Type 2 diabetes, osteoporosis, cardiovascular disease, and reproductive cancers. We have shown previously in nonhuman primates that soy protein containing isoflavones leads to improved body weight, insulin sensitivity, lipid profiles, and atherosclerosis compared to protein without soy isoflavones (casein), and does not increase the risk of cancer. Since genistein has been shown to alter DNA methylation, we compared the methylation profiles of cynomolgus monkeys, from multiple tissues, eating two high-fat, typical American diets (TAD) with similar macronutrient contents, with or without soy protein. DNA methylation status was successfully determined for 80.6% of the probes in at least one tissue using Illumina's HumanMethylation27 BeadChip. Overall methylation increased in liver and muscle tissue when monkeys switched from the TAD-soy to the TAD-casein diets. Genes involved in epigenetic processes, specifically homeobox genes (HOXA5, HOXA11, and HOXB1), and ABCG5 were among those that changed between diets. These data support the use of the HumanMethylation27 BeadChip in cynomolgus monkeys and identify epigenetic changes associated with dietary interventions with soy protein that may potentially affect the etiology of complex diseases.  相似文献   
955.
Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.  相似文献   
956.
957.
Kang JS  Lee DW  Koh YH  Lee SH 《PloS one》2011,6(4):e19063
The pinewood nematode genome encodes at least three distinct acetylcholinesterases (AChEs). To understand physiological roles of the three pinewood nematode AChEs (BxACE-1, BxACE-2, and BxACE-3), BxACE-3 in particular, their tissue distribution and inhibition profiles were investigated. Immunohistochemistry revealed that BxACE-1 and BxACE-2 were distributed in neuronal tissues. In contrast, BxACE-3 was detected from some specific tissues and extracted without the aid of detergent, suggesting its soluble nature unlike BxACE-1 and BxACE-2. When present together, BxAChE3 significantly reduced the inhibition of BxACE-1 and BxACE-2 by cholinesterase inhibitors. Knockdown of BxACE-3 by RNA interference significantly increased the toxicity of three nematicidal compounds, supporting the protective role of BxACE-3 against chemicals. In summary, BxACE-3 appears to have a non-neuronal function of chemical defense whereas both BxACE-1 and BxACE-2 have classical neuronal function of synaptic transmission.  相似文献   
958.
Endothelin‐1 (ET‐1) has been demonstrated to induce insulin resistance (IR) and lipolysis, raising the possibility that ET‐1 may also contribute to the elevated fatty acid levels in IR‐associated comorbidities. We attempted to evaluate whether ET‐1 also affects the long‐chain fatty acid (LCFA) utilization in 3T3‐L1 adipocytes. The effects of chronic ET‐1 exposure on basal and insulin‐stimulated LCFA uptake, and LCFA uptake kinetics were examined in 3T3‐L1 adipocytes. Chronic exposure to ET‐1 induced IR and suppressed basal and insulin‐stimulated LCFA uptake. Given that insulin acutely stimulates LCFA uptake, there was dramatically similar trend of dose‐response curves for ET‐1‐suppressed LCFA uptake, and also similar corresponding IC50 values, between basal and insulin‐stimulated states, reflecting that ET‐1 predominantly suppresses basal LCFA uptake. Results of LCFA kinetics, western blots, and CD36 inhibition using sulfosuccinimidyl oleate (SSO) revealed that suppression of LCFA uptake by ET‐1 is associated with downregulation of CD36. ET type A receptor (ETAR) antagonist BQ‐610 reversed the IR induction and the ET‐1‐suppressed LCFA uptake. Exogenous replenishment of phosphatidylinositol (PI) 4, 5‐bisphosphate (PIP2) prevented IR induction, but not the suppression of LCFA uptake by ET‐1. Pharmacological inhibition of the activation of mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK) completely blocked the ET‐1‐suppressed LCFA uptake. Serving as an inducer of IR, ET‐1 also chronically suppresses LCFA uptake via PIP2‐independent and ERK‐dependent pathway. The interplay between impaired glucose disposal and diminished LCFA utilization, induced by ET‐1, could worsen the dysregulation of adipose metabolism and energy homeostasis in insulin‐resistant states.  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号