首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1609篇
  免费   70篇
  国内免费   114篇
  2024年   1篇
  2023年   20篇
  2022年   40篇
  2021年   81篇
  2020年   54篇
  2019年   65篇
  2018年   53篇
  2017年   35篇
  2016年   57篇
  2015年   91篇
  2014年   100篇
  2013年   102篇
  2012年   162篇
  2011年   131篇
  2010年   80篇
  2009年   70篇
  2008年   98篇
  2007年   76篇
  2006年   75篇
  2005年   54篇
  2004年   56篇
  2003年   40篇
  2002年   21篇
  2001年   38篇
  2000年   21篇
  1999年   20篇
  1998年   15篇
  1997年   17篇
  1996年   13篇
  1995年   10篇
  1994年   11篇
  1993年   12篇
  1992年   18篇
  1991年   12篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1793条查询结果,搜索用时 15 毫秒
71.
72.
The typical two-component regulatory systems (TCSs), consisting of response regulator and histidine kinase, play a central role in survival of pathogenic bacteria under stress conditions such as nutrient starvation, hypoxia, and nitrosative stress. A total of 11 complete paired two-component regulatory systems have been found in Mycobacterium tuberculosis, including a few isolated kinase and regulatory genes. Increasing evidence has shown that TCSs are closely associated with multiple physiological process like intracellular persistence, pathogenicity, and metabolism. This review gives the two-component signal transduction systems in M. tuberculosis and their signal transduction roles in adaption to the environment.  相似文献   
73.
74.
75.
Mitochondrial dysfunction is becoming one of the main pathology factors involved in the etiology of neurological disorders. Recently, mutations of the coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) which encode two homologous proteins that belong to the mitochondrial CHCH domain protein family, are linked to Parkinson’s disease and amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), respectively. However, the physiological and pathological roles of these twin proteins have not been well elaborated. Here, we show that, in physiological conditions, CHCHD2 and CHCHD10 interact with OMA1 and suppress its enzyme activity, which not only restrains the initiation of the mitochondrial integrated response stress (mtISR), but also suppresses the processing of OPA1 for mitochondrial fusion. Further, during mitochondria stress-induced by carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, CHCHD2 and CHCHD10 translocate to the cytosol and interacte with eIF2a, which attenuates mtISR overactivation by suppressing eIF2a phosphorylation and its downstream response. As such, knockdown of CHCHD2 and CHCHD10 triggers mitochondrial ISR, and such cellular response is enhanced by CCCP treatment. Therefore, our findings demonstrate the first “mtISR suppressor” localized in mitochondria for regulating stress responses in mammalian cells, which has a profound pathological impact on the CHCH2/CHCH10-linked neurodegenerative disorder.Subject terms: Stress signalling, Mitochondria  相似文献   
76.
Spatial self-organization is a hallmark of surface-associated microbial communities that is governed by local environmental conditions and further modified by interspecific interactions. Here, we hypothesize that spatial patterns of microbial cell-types can stabilize the composition of cross-feeding microbial communities under fluctuating environmental conditions. We tested this hypothesis by studying the growth and spatial self-organization of microbial co-cultures consisting of two metabolically interacting strains of the bacterium Pseudomonas stutzeri. We inoculated the co-cultures onto agar surfaces and allowed them to expand (i.e. range expansion) while fluctuating environmental conditions that alter the dependency between the two strains. We alternated between anoxic conditions that induce a mutualistic interaction and oxic conditions that induce a competitive interaction. We observed co-occurrence of both strains in rare and highly localized clusters (referred to as “spatial jackpot events”) that persist during environmental fluctuations. To resolve the underlying mechanisms for the emergence of spatial jackpot events, we used a mechanistic agent-based mathematical model that resolves growth and dispersal at the scale relevant to individual cells. While co-culture composition varied with the strength of the mutualistic interaction and across environmental fluctuations, the model provides insights into the formation of spatially resolved substrate landscapes with localized niches that support the co-occurrence of the two strains and secure co-culture function. This study highlights that in addition to spatial patterns that emerge in response to environmental fluctuations, localized spatial jackpot events ensure persistence of strains across dynamic conditions.Subject terms: Microbial ecology, Biofilms  相似文献   
77.
This study was carried out to examine the effects of the meiosis-activating C(29) sterol, 4,4-dimethyl-5 alpha-cholesta-8,14, 24-trien-3 beta-ol (FF-MAS), on mouse oocyte maturation in vitro. Cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) from hormonally primed, immature mice were cultured 17-18 h in minimum essential medium (MEM) containing 4 mM hypoxanthine plus increasing concentrations of FF-MAS. The sterol induced maturation in DO with an optimal concentration of 3 microg/ml but was without effect in CEO, even at concentrations as high as 10 microg/ml. Some stimulation of maturation in hypoxanthine-arrested CEO was observed when MEM was replaced by MEMalpha. Interestingly, the sterol suppressed the maturation of hypoxanthine-arrested CEO in MEM upon removal of glucose from the medium. FF-MAS also failed to induce maturation in DO when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP). The rate of maturation in FF-MAS-stimulated, hypoxanthine-arrested DO was slow, as more than 6 h of culture elapsed before significant meiotic induction was observed, and this response required the continued presence of the sterol. Although the oocyte took up radiolabeled lanosterol, such accumulation was restricted by the presence of cumulus cells. In addition, lanosterol failed to augment FSH-induced maturation and was even inhibitory at a high concentration. Moreover, the downstream metabolite, cholesterol, augmented the inhibitory action of dbcAMP on maturation in both CEO and DO. Two inhibitors of 14 alpha-demethylase, ketoconazole, and 14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta, 15 alpha-diol that can suppress FF-MAS production from lanosterol failed to block consistently FSH-induced maturation. These results confirm the stimulatory action of FF-MAS on hypoxanthine-arrested DO but do not support a universal meiosis-inducing function for this sterol.  相似文献   
78.
79.
Smith-Lemli-Opitz syndrome (SLOS) is a hereditary disorder in which a defective gene encoding 7-dehydrocholesterol reductase causes the accumulation of noncholesterol sterols, such as 7- and 8-dehydrocholesterol. Using rigorous analytical methods in conjunction with a large collection of authentic standards, we unequivocally identified numerous noncholesterol sterols in 6 normal and 17 SLOS blood samples. Plasma or erythrocytes were saponified under oxygen-free conditions, followed by multiple chromatographic separations. Individual sterols were identified and quantitated by high performance liquid chromatography (HPLC), Ag(+)-HPLC, gas chromatography (GC), GC-mass spectrometry, and nuclear magnetic resonance. As a percentage of total sterol content, the major C(27) sterols observed in the SLOS blood samples were cholesterol (12;-98%), 7-dehydrocholesterol (0.4;-44%), 8-dehydrocholesterol (0.5;-22%), and cholesta-5,7,9(11)-trien-3beta-ol (0.02;-5%), whereas the normal blood samples contained <0.03% each of the three noncholesterol sterols. SLOS and normal blood contained similar amounts of lathosterol (0.05;-0.6%) and cholestanol (0.1;-0.4%) and approximately 0.003;-0.1% each of the Delta(8), Delta(8(14)), Delta(5,8(14)), Delta(5,24), Delta(6,8), Delta(6,8(14)), and Delta(7,24) sterols.The results are consistent with the hypothesis that the Delta(8(14)) sterol is an intermediate of cholesterol synthesis and indicate the existence of undescribed aberrant pathways that may explain the formation of the Delta(5,7,9(11)) sterol. 19-Norcholesta-5,7,9-trien-3beta-ol was absent in both SLOS and normal blood, although it was routinely observed as a GC artifact in fractions containing 8-dehydrocholesterol. The overall findings advance the understanding of SLOS and provide a methodological model for studying other metabolic disorders of cholesterol synthesis.  相似文献   
80.
Ruan J  Ma L  Shi Y  Han W 《Annals of botany》2004,93(1):97-105
BACKGROUND AND AIMS: Tea plants (Camellia sinensis L.) accumulate large amounts of fluoride (F) from soils containing normal F concentrations. The present experiments examined the effects of pH and Ca on F uptake by this accumulating plant species. METHODS: The effect of pH was assessed in two experiments, one using uptake solutions with different pHs, and the other using lime, as CaO, applied to the soil. The effect of Ca was examined by analysing F concentrations in plants supplied with varying amounts of Ca, as Ca(NO3)2, either in uptake solutions or through the soil. KEY RESULTS: F uptake was highest at solution pH 5.5, and significantly lower at pH 4.0. In the soil experiment, leaf F decreased linearly with the amounts of lime, which raised the soil pH progressively from 4.32 to 4.91, 5.43, 5.89 and, finally, 6.55. Liming increased the water-soluble F content of the soil. Including Ca in the uptake solution or adding Ca to soil significantly decreased leaf F concentrations. The distribution pattern of F in tea plants was not altered by Ca treatment, with most F being allocated to leaves. The activity of F- in the uptake solution was unaffected and water-soluble F in the soil was sometimes increased by added Ca. CONCLUSIONS: F uptake by tea plants, which are inherently able to accumulate large quantities of F, was affected both by pH and by Ca levels in the medium. The reduced F uptake following Ca application appeared not to be due simply to the precipitation of CaF2 in solution and soil or to the complexing of Ca and F in roots, although these factors cannot be dismissed. It was more likely due to the effect of Ca on the properties of cell wall or membrane permeability in the solution experiments, and to alteration of F speciations and their quantities in soil solutions following Ca application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号