首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56281篇
  免费   4707篇
  国内免费   49篇
  61037篇
  2023年   200篇
  2022年   586篇
  2021年   1003篇
  2020年   556篇
  2019年   741篇
  2018年   1133篇
  2017年   890篇
  2016年   1566篇
  2015年   2590篇
  2014年   2881篇
  2013年   3369篇
  2012年   4344篇
  2011年   4157篇
  2010年   2639篇
  2009年   2319篇
  2008年   3340篇
  2007年   3102篇
  2006年   2835篇
  2005年   2558篇
  2004年   2508篇
  2003年   2226篇
  2002年   1898篇
  2001年   1645篇
  2000年   1536篇
  1999年   1218篇
  1998年   528篇
  1997年   468篇
  1996年   401篇
  1995年   393篇
  1994年   305篇
  1993年   298篇
  1992年   639篇
  1991年   515篇
  1990年   474篇
  1989年   479篇
  1988年   405篇
  1987年   390篇
  1986年   318篇
  1985年   329篇
  1984年   270篇
  1983年   224篇
  1982年   189篇
  1981年   162篇
  1980年   160篇
  1979年   220篇
  1978年   197篇
  1977年   179篇
  1976年   170篇
  1974年   196篇
  1972年   155篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
Expression of the RI regulatory subunit of protein kinase A type I is increased in human cancer cell lines, in primary tumors, in cells after transformation, and in cells upon stimulation of growth. Ala99 (the pseudophosphorylation site) of human RI was replaced with Ser (RI-p) for the structure-function analysis of RI. MCF-7 hormone- dependent breast cancer cells were transfected with an expression vector for the wild-type RI or mutant RI-p. Overexpression of RI-P resulted in suppression of protein kinase A type II, the isozyme of type I kinase, production of kinase exhibiting reduced cAMP activation, and inhibition of cell growth showing an increase in G0/G1 phase of the cell cycle and apoptosis. The wild-type RI overexpression had no effect on protein kinase A isozyme distribution or cell growth. Overexpression of protein kinase A type II regulatory subunit, RII, suppressed RI and protein kinase A type I and inhibited cell growth. These results show that the growth of hormone-dependent breast cancer cells is dependent on the functional protein kinase A type I.  相似文献   
993.
We examined the regulatory/promoter sequence of a calcium ionophore-inducible gene isolated from the rat genome. Whereas the promoter of this ubiquitously expressed gene is active under noninduced conditions, after induction by calcium ionophore A23187 this promoter is 10- to 25-fold more active than the simian virus 40 early promoter, as measured by chloramphenicol acetyltransferase activities. Within this regulatory/promoter region, we have identified a DNA fragment with enhancer-like properties immediately 5' to the TATA sequence. This 291-nucleotide fragment acts in cis to enhance expression of the neomycin phosphotransferase (neo) gene driven by the herpes simplex virus thymidine kinase promoter in an orientation-independent manner. In addition, this fragment can confer A23187 inducibility to the neo gene and effectively compete for positive regulatory factors involved in A23187 induction. Sequence analysis of this promoter reveals homology with viral core enhancer sequences, and the apparent organization of direct repeat domains is similar to those observed in viral enhancers.  相似文献   
994.
995.
In adherent cells, cell-substratum interactions are essential for the propagation of some growth factor signaling events. However, it has not been resolved to what extent different types of extracellular matrix regulate the signals elicited by different soluble ligands. Our previous work has shown that prolactin signaling in mammary epithelium requires a specific cell interaction with the basement membrane and does not occur in cells plated on collagen I. We have now investigated whether the proximal signaling pathways triggered by insulin, epidermal growth factor (EGF), and interferon-gamma are differentially regulated in primary mammary epithelial cell cultures established on basement membrane and collagen I. Two distinct signaling pathways triggered by insulin exhibited a differential requirement for cell-matrix interactions. Activation of insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase was restricted to cells contacting basement membrane, whereas the phosphorylation of Erk occurred equally in cells on both substrata. The amplitude and duration of insulin-triggered IRS-1 phosphorylation and its association with phosphatidylinositol 3-kinase were strongly enhanced by cell-basement membrane interactions. The mechanism for inhibition of IRS-1 phosphorylation in cells cultured on collagen I may in part be mediated by protein-tyrosine phosphatase activity since vanadate treatment somewhat alleviated this effect. In contrast to the results with insulin, cell adhesion to collagen I conferred greater response to EGF, leading to higher levels of tyrosine phosphorylation of the EGF receptor and Erk. The mechanism for increased EGF signaling in cells adhering to collagen I was partly through an increase in EGF receptor expression. The interferon-gamma-activated tyrosine phosphorylation of Jak2 and Stat3 was independent of the extracellular matrix. It is well recognized that the cellular environment determines cell phenotype. We now suggest that this may occur through a selective modulation of growth factor signal transduction resulting from different cell-matrix interactions.  相似文献   
996.
Liong E  Kong SK  Au KK  Li JY  Xu GY  Lee YL  Kwok TT  Choy YM  Lee CY  Fung KP 《Life sciences》1999,65(15):PL215-PL220
Recombinant human tumour necrosis factor-alpha (rhTNF-alpha) arrested the growth and suppressed glucose uptake of mouse fibrosarcoma L929 cells in vitro. When the cells were treated with rhTNF-alpha for 24 hours, the mRNA level of glucose transporter 1 (GLUT 1), which is the only GLUT found to be present in L929 cells in our study, was suppressed in a dose-dependent manner. Since the growth of tumour cells depends mainly on glucose catabolism, our findings may indicate that rhTNF-alpha inhibits L929 cells growth by lowering the glucose transport through suppression of GLUT 1 mRNA expression in the cells.  相似文献   
997.
In many plant RNA viruses, Domains 1, 2 and 3 are conserved in replicase proteins. In order to examine the interference of viral replication by the Domain 1 sequence, we generated transgenic plants transformed with DNA corresponding to the Domain 1 sequence of the TMV 126 kDa protein. This DNA sequence includes the TMV RNA from nucleotides 1 to 2,149, which comprises both the 5'-untranslated and methyl transferase region. The transgenic plants obtained showed complete resistance to TMV infection. The presence of the Domain 1 sequence in the plants completely prevented local necrosis in Nicotiana tabacum cv. Xanthi nc, and any systemic development of symptoms in Nicotiana tabacum Xanthi upon TMV inoculation. Most transgenic plants sustained the conferred resistance even under TMV inoculum concentrations up to as high as 1,000 microg/ml. To detect any accumulation of TMV coat protein or viral RNA in infected transgenic plants, immunochemical tests and Northern blot analyses were carried out. Neither viral RNA or coat protein was detectable in the systemic leaves of the completely resistant transgenic plants, whereas they were accumulated in large quantities in all of the control plants. Because of the conservation of Domain 1 in many plant RNA viruses, the acquisition of resistance to virus infection using the Domain 1 sequence appears to be a very effective strategy for breeding of viral resistant plants.  相似文献   
998.
The p53 tumor suppressor protein is a dimer of dimers that binds its consensus DNA sequence (containing two half-sites) as a pair of clamps. We show here that after one wild-type dimer of a tetramer binds to a half-site on the DNA, the other (unbound) dimer can be in either the wild-type or the mutant conformation. An equilibrium state between these two conformations exists and can be modulated by two types of regulators. One type modifies p53 biochemically and determines the intrinsic balance of the equilibrium. The other type of regulator binds directly to one or both dimers in a p53 tetramer, trapping each dimer in one or the other conformation. In the wild-type conformation, the second dimer can bind to the second DNA half-site, resulting in drastically enhanced stability of the p53-DNA complex. Importantly, a genotypically mutant p53 can also be in equilibrium with the wild-type conformation, and when trapped in this conformation can bind DNA.  相似文献   
999.
Gaegurin 4 (GGN4) is a cationic peptide of 37 amino acids (MW 3748) isolated from the skin of Rana rugosa. It has shown a broad spectrum antimicrobial activity in vitro against Gram-negative and -positive bacteria, fungi and protozoa. To understand its mechanism of antimicrobial action, we examined the effect of GGN4 on the membrane conductance and the electrical properties of GGN4-induced pores in planar lipid bilayers under voltage clamp. Natural and synthetic GGN4 (0.01-1 microg/mL) increased the membrane conductance in a concentration-dependent manner, but GGN4 (1-23), an N-terminal fragment of the peptide with little antimicrobial activity, failed to increase the conductance. At symmetrical 100 mM KCI, unitary conductances of about 120 pS were frequently observed. Their current-voltage relations were linear and open state probabilities were close to 1, but longer closing events were seen more frequently at negative voltages. In addition, GGN4-induced pores were selective for cation over anion, the permeability ratio of K+ to Cl- being 6: 1 in neutral and 7: 1 in acidic lipid bilayers. In conclusion, our results indicate that GGN4 forms voltage-dependent and cation-selective pores in planar lipid bilayers. The ionophoric property of GGN4 is likely to contribute to its antimicrobial activity.  相似文献   
1000.
Lee K 《Journal of bacteriology》1999,181(9):2719-2725
Naphthalene dioxygenase (NDO) is a multicomponent enzyme system that oxidizes naphthalene to (+)-cis-(1R,2S)-1,2-dihydroxy-1, 2-dihydronaphthalene with consumption of O2 and two electrons from NAD(P)H. In the presence of benzene, NADH oxidation and O2 utilization were partially uncoupled from substrate oxidation. Approximately 40 to 50% of the consumed O2 was detected as hydrogen peroxide. The rate of benzene-dependent O2 consumption decreased with time, but it was partially increased by the addition of catalase in the course of the O2 consumption by NDO. Detailed experiments showed that the total amount of O2 consumed and the rate of benzene-induced O2 consumption increased in the presence of hydrogen peroxide-scavenging agents, and further addition of the terminal oxygenase component (ISPNAP) of NDO. Kinetic studies showed that ISPNAP was irreversibly inactivated in the reaction that contained benzene, but the inactivation was relieved to a high degree in the presence of catalase and partially relieved in the presence of 0.1 mM ferrous ion. Benzene- and naphthalene-reacted ISPNAP gave almost identical visible absorption spectra. In addition, hydrogen peroxide added at a range of 0.1 to 0.6 mM to the reaction mixtures inactivated the reduced ISPNAP containing mononuclear iron. These results show that hydrogen peroxide released during the uncoupling reaction acts both as an inhibitor of benzene-dependent O2 consumption and as an inactivator of ISPNAP. It is proposed that the irreversible inactivation of ISPNAP occurs by a Fenton-type reaction which forms a strong oxidizing agent, hydroxyl radicals (. OH), from the reaction of hydrogen peroxide with ferrous mononuclear iron at the active site. Furthermore, when [14C]benzene was used as the substrate, cis-benzene 1,2-dihydrodiol formed by NDO was detected. This result shows that NDO also couples a trace amount of benzene to both O2 consumption and NADH oxidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号