首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18839篇
  免费   1694篇
  国内免费   1427篇
  21960篇
  2023年   242篇
  2022年   531篇
  2021年   893篇
  2020年   604篇
  2019年   687篇
  2018年   726篇
  2017年   538篇
  2016年   699篇
  2015年   1148篇
  2014年   1263篇
  2013年   1366篇
  2012年   1562篇
  2011年   1498篇
  2010年   982篇
  2009年   834篇
  2008年   905篇
  2007年   877篇
  2006年   770篇
  2005年   657篇
  2004年   617篇
  2003年   544篇
  2002年   515篇
  2001年   392篇
  2000年   390篇
  1999年   359篇
  1998年   170篇
  1997年   161篇
  1996年   158篇
  1995年   119篇
  1994年   146篇
  1993年   90篇
  1992年   155篇
  1991年   147篇
  1990年   122篇
  1989年   98篇
  1988年   82篇
  1987年   96篇
  1986年   83篇
  1985年   92篇
  1984年   48篇
  1983年   48篇
  1982年   48篇
  1981年   36篇
  1980年   37篇
  1979年   52篇
  1978年   41篇
  1977年   45篇
  1976年   33篇
  1975年   35篇
  1974年   44篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
151.
152.
153.
The cystic fibrosis transmembrane conductance regulator (CFTR)-interacting protein, CFTR-associated ligand (CAL) down-regulates total and cell surface CFTR by targeting CFTR for degradation in the lysosome. Here, we report that a Rho family small GTPase TC10 interacts with CAL. This interaction specifically up-regulates CFTR protein expression. Co-expression of the constitutively active form, TC10Q75L, increases total and cell surface CFTR in a dose-dependent fashion. Moreover, co-expression of the dominant-negative mutant TC10T31N causes a dose-dependent reduction in mature CFTR. The effect of TC10 is independent of the level of CFTR expression, because a similar effect was observed in a stable cell line that expresses one-tenth of CFTR. Co-expression of TC10Q75L did not have a similar effect on the expression of plasma membrane proteins such as Frizzled-3 and Pr-cadherin or cytosolic proteins such as tubulin and green fluorescent protein. TC10Q75L also did not have a similar effect on the vesicular stomatitis virus glycoprotein. Co-expression of constitutively active and dominant-negative forms of Cdc42 or RhoA did not affect CFTR expression in a manner similar to TC10, indicating that the effect of TC10 is unique within the Rho family. Metabolic pulse-chase experiments show that TC10 did not affect CFTR maturation, suggesting that it exerts its effects on the mature CFTR. Importantly, TC10Q75L reverses CAL-mediated CFTR degradation, suggesting that TC10Q75L inhibits CAL-mediated degradation of CFTR. TC10Q75L does not operate by reducing CAL protein expression or its ability to form dimers or interact with CFTR. Interestingly, the expression of TC10Q75L causes a dramatic redistribution of CAL from the juxtanuclear region to the plasma membrane where the two molecules overlap. These data suggest that TC10 regulates both total and plasma membrane CFTR expression by interacting with CAL. The GTP-bound form of TC10 directs the trafficking of CFTR from the juxtanuclear region to the secretory pathway toward the plasma membrane, away from CAL-mediated degradation of CFTR in the lysosome.  相似文献   
154.
155.
Zhu C  Lou J  McEver RP 《Biorheology》2005,42(6):443-462
Force can shorten the lifetimes of macromolecular complexes (e.g., receptor-ligand bonds) by accelerating their dissociation. Perhaps paradoxical at first glance, bond lifetimes can also be prolonged by force. This counterintuitive behavior was named catch bonds, which is in contrast to the ordinary slip bonds that describe the intuitive behavior of lifetimes being shortened by force. Fifteen years after their theoretical proposal, catch bonds have finally been observed. In this article we review recently published data that have demonstrated catch bonds in the selectin system and suggested catch bonds in other systems, the theoretical models for their explanations, possible structural bases, their relation to flow-enhanced adhesion, and the potential biorheological relevance.  相似文献   
156.
The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as compared with the established shotgun proteomics.We implemented a novel DIA method on the widely used Orbitrap platform and used retention-time-normalized (iRT) spectral libraries for targeted data extraction using Spectronaut. We call this combination hyper reaction monitoring (HRM). Using a controlled sample set, we show that HRM outperformed shotgun proteomics both in the number of consistently identified peptides across multiple measurements and quantification of differentially abundant proteins. The reproducibility of HRM in peptide detection was above 98%, resulting in quasi complete data sets compared with 49% of shotgun proteomics.Utilizing HRM, we profiled acetaminophen (APAP)1-treated three-dimensional human liver microtissues. An early onset of relevant proteome changes was revealed at subtoxic doses of APAP. Further, we detected and quantified for the first time human NAPQI-protein adducts that might be relevant for the toxicity of APAP. The adducts were identified on four mitochondrial oxidative stress related proteins (GATM, PARK7, PRDX6, and VDAC2) and two other proteins (ANXA2 and FTCD).Our findings imply that DIA should be the preferred method for quantitative protein profiling.Quantitative mass spectrometry is a powerful and widely used approach to identify differentially abundant proteins, e.g. for proteome profiling and biomarker discovery (1). Several tens of thousands of peptides and thousands of proteins can be routinely identified from a single sample injection in shotgun proteomics (2). Shotgun proteomics, however, is limited by low analytical reproducibility. This is due to the complexity of the samples that results in under sampling (supplemental Fig. 1) and to the fact that the acquisition of MS2 spectra is often triggered outside of the elution peak apex. As a result, only 17% of the detectable peptides are typically fragmented, and less than 60% of those are identified. This translates in reliable identification of only 10% of the detectable peptides (3). The overlap of peptide identification across technical replicates is typically 35–60% (4), which results in inconsistent peptide quantification. Alternatively to shotgun proteomics, selected reaction monitoring (SRM) enables quantification of up to 200–300 peptides at very high reproducibility, accuracy, and precision (58).Data-independent acquisition (DIA), a novel acquisition type, overcomes the semistochastic nature of shotgun proteomics (918). Spectra are acquired according to a predefined schema instead of dependent on the data. Targeted analysis of DIA data was introduced with SWATH-MS (19). For the originally published SWATH-MS, the mass spectrometer cycles through 32 predefined, contiguous, 25 Thomson wide precursor windows, and records high-resolution fragment ion spectra (19). This results in a comprehensive measurement of all detectable precursors of the selected mass range. The main novelty of SWATH-MS was in the analysis of the collected DIA data. Predefined fragment ions are extracted using precompiled spectrum libraries, which results in SRM-like data. Such targeted analyses are now enabled by several publicly available computational tools, in particular Spectronaut2, Skyline (20), and OpenSWATH (21). The accuracy of peptide identification is evaluated based on the mProphet method (22).We introduce a novel SWATH-MS-type DIA workflow termed hyper reaction monitoring (HRM) (reviewed in (23)) implemented on a Thermo Scientific Q Exactive platform. It consists of comprehensive DIA acquisition and targeted data analysis with retention-time-normalized spectral libraries (24). Its high accuracy of peptide identification and quantification is due to three aspects. First, we developed a novel, improved DIA method. Second, we reimplemented the mProphet (22) approach in the software Spectronaut (www.spectronaut.org). Third, we developed large, optimized, and retention-time-normalized (iRT) spectral libraries.We compared HRM and state-of-the-art shotgun proteomics in terms of ability to discover differentially abundant proteins. For this purpose, we used a “profiling standard sample set” with 12 non-human proteins spiked at known absolute concentrations into a stable human cell line protein extract. This resulted in quasi complete data sets for HRM and the detection of a larger number of differentially abundant proteins as compared with shotgun proteomics. We utilized HRM to identify changes in the proteome in primary three-dimensional human liver microtissues after APAP exposure (2527). These primary hepatocytes exhibit active drug metabolism. With a starting material of only 12,000 cells per sample, the abundance of 2,830 proteins was quantified over an APAP concentration range. Six novel NAPQI-cysteine proteins adducts that might be relevant for the toxicity of APAP were found and quantified mainly on mitochondrion-related proteins.  相似文献   
157.
At least six major genotypes of Hepatitis C virus (HCV) cause liver diseases worldwide.The efficacy rates with current standard of care are about 50% against genotype 1,the most prevalent strain in the...  相似文献   
158.
159.
Additives are known to improve the performance of organic photovoltaic devices based on mixtures of a low bandgap polymer, poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]‐dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (PCPDTBT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM). The evolution of the morphology during the evaporation of the mixed solvent, which comprises additive and chlorobenzene (CB), is investigated by in‐situ grazing incidence X‐ray scattering, providing insight into the key role the additive plays in developing a multi‐length‐scale morphology. Provided the additive has a higher vapor pressure and a selective solubility for PCBM, as the host solvent (CB) evaporates, the mixture of the primary solvent and additive becomes less favorable for the PCPDTBT, while completely solubilizing the PCBM. During this process, the PCPDTBT first crystallizes into fibrils and then the PCBM, along with the remaining PCPDTBT, is deposited, forming a phase‐separated morphology comprising domains of pure, crystalline PCPDTBT fibrils and another domain that is a PCBM‐rich mixture with amorphous PCPDTBT. X‐ray/neutron scattering and diffraction methods, in combination with UV–vis absorption spectroscopy and transmission electron microscopy, are used to determine the crystallinity and phase separation of the resultant PCPDTBT/PCBM thin films processed with or without additives. Additional thermal annealing is carried out and found to change the packing of the PCPDTBT. The two factors, degree of crystallinity and degree of phase separation, control the multi‐length‐scale morphology of the thin films and significantly influence device performance.  相似文献   
160.
Alphaviruses are enveloped icosahedral viruses that mature by budding at the plasma membrane. According to a prevailing model maturation is driven by binding of membrane protein spikes to a preformed nucleocapsid (NC). The T = 4 geometry of the membrane is thought to be imposed by the NC through one-to-one interactions between spike protomers and capsid proteins (CPs). This model is challenged here by a Semliki Forest virus capsid gene mutant. Its CPs cannot assemble into NCs, or its intermediate structures, due to defective CP-CP interactions. Nevertheless, it can use its horizontal spike-spike interactions on membrane surface and vertical spike-CP interactions to make a particle with correct geometry and protein stoichiometry. Thus, our results highlight the direct role of membrane proteins in organizing the icosahedral conformation of alphaviruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号