首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19718篇
  免费   1799篇
  国内免费   1577篇
  23094篇
  2024年   34篇
  2023年   249篇
  2022年   553篇
  2021年   936篇
  2020年   638篇
  2019年   735篇
  2018年   772篇
  2017年   582篇
  2016年   738篇
  2015年   1203篇
  2014年   1321篇
  2013年   1437篇
  2012年   1623篇
  2011年   1555篇
  2010年   1016篇
  2009年   873篇
  2008年   940篇
  2007年   906篇
  2006年   810篇
  2005年   687篇
  2004年   667篇
  2003年   589篇
  2002年   602篇
  2001年   441篇
  2000年   417篇
  1999年   384篇
  1998年   179篇
  1997年   167篇
  1996年   169篇
  1995年   122篇
  1994年   155篇
  1993年   95篇
  1992年   157篇
  1991年   148篇
  1990年   122篇
  1989年   101篇
  1988年   83篇
  1987年   96篇
  1986年   87篇
  1985年   92篇
  1984年   49篇
  1983年   49篇
  1982年   48篇
  1981年   36篇
  1980年   37篇
  1979年   52篇
  1978年   41篇
  1977年   45篇
  1975年   35篇
  1974年   44篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
61.
A series of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)pyrazoles 14a-ae, 16a, 16b, and 21a-c has been prepared and evaluated for their ALK5 inhibitory activity in an enzyme assay and in a cell-based luciferase reporter assay. The 4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-N-(4-methoxyphenyl)-3-(6-methylpyridin-2-yl)-1H-pyrazole-1-carbothioamide (14n) inhibited ALK5 phosphorylation with IC(50) value of 0.57 nM and showed 94% inhibition at 100 nM in a luciferase reporter assay using HaCaT cells permanently transfected with p3TP-luc reporter construct.  相似文献   
62.
63.
Shen Y  Cheng SC 《Biometrics》1999,55(4):1093-1100
In the context of competing risks, the cumulative incidence function is often used to summarize the cause-specific failure-time data. As an alternative to the proportional hazards model, the additive risk model is used to investigate covariate effects by specifying that the subject-specific hazard function is the sum of a baseline hazard function and a regression function of covariates. Based on such a formulation, we present an approach to constructing simultaneous confidence intervals for the cause-specific cumulative incidence function of patients with given risk factors. A melanoma data set is used for the purpose of illustration.  相似文献   
64.
Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein previously known as SRFR1 (SUPPRESSOR OF rps4-RLD). The constitutive defense responses in the srfr1 mutants in Col-0 background are suppressed by mutations in SNC1, which encodes a TIR-NB-LRR (Toll Interleukin1 Receptor-Nucleotide Binding-Leu-Rich Repeat) R protein. Yeast two-hybrid screens identified SGT1a and SGT1b as interacting proteins of SRFR1. The interactions between SGT1 and SRFR1 were further confirmed by co-immunoprecipitation analysis. In srfr1 mutants, levels of multiple NB-LRR R proteins including SNC1, RPS2 and RPS4 are increased. Increased accumulation of SNC1 is also observed in the sgt1b mutant. Our data suggest that SRFR1 functions together with SGT1 to negatively regulate R protein accumulation, which is required for preventing auto-activation of plant immunity.  相似文献   
65.
The microbial populations responsible for anaerobic degradation of phthalate isomers were investigated by enrichment and isolation of those microbes from anaerobic sludge treating wastewater from the manufacturing of terephthalic acid. Primary enrichments were made with each of three phthalate isomers (ortho-, iso-, and terephthalate) as the sole energy source at 37 degrees C with two sources of anaerobic sludge (both had been used to treat wastewater containing high concentrations of phthalate isomers) as the inoculum. Six methanogenic enrichment cultures were obtained which not only degraded the isomer used for the enrichment but also had the potential to degrade part of other phthalate isomers as well as benzoate with concomitant production of methane, presumably involving strictly syntrophic substrate degradation. Our 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization revealed that the predominant bacteria in the enrichment cultures were affiliated with a recently recognized non-sulfate-reducing subcluster (subcluster Ih) in the group 'Desulfotomaculum lineage I' or a clone cluster (group TA) in the class delta-PROTEOBACTERIA: Several attempts were made to isolate these microbes, resulting in the isolation of a terephthalate-degrading bacterium, designated strain JT, in pure culture. A coculture of the strain with the hydrogenotrophic methanogen Methanospirillum hungatei converted terephthalate to acetate and methane within 3 months of incubation, whereas strain JT could not degrade terephthalate in pure culture. During the degradation of terephthalate, a small amount of benzoate was transiently accumulated as an intermediate, indicative of decarboxylation of terephthalate to benzoate as the initial step of the degradation. 16S rRNA gene sequence analysis revealed that the strain was a member of subcluster Ih of the group 'Desulfotomaculum lineage I', but it was only distantly related to other known species.  相似文献   
66.
The reaction-diffusion system of the neuromuscular junction has been modeled in 3D using the finite element package FEtk. The numerical solution of the dynamics of acetylcholine with the detailed reaction processes of acetylcholinesterases and nicotinic acetylcholine receptors has been discussed with the reaction-determined boundary conditions. The simulation results describe the detailed acetylcholine hydrolysis process, and reveal the time-dependent interconversion of the closed and open states of the acetylcholine receptors as well as the percentages of unliganded/monoliganded/diliganded states during the neuro-transmission. The finite element method has demonstrated its flexibility and robustness in modeling large biological systems.  相似文献   
67.
68.
Deletion or mutation of the SMN1 (survival of motor neurons) gene causes the common, fatal neuromuscular disease spinal muscular atrophy. The SMN protein is important in small nuclear ribonucleoprotein (snRNP) assembly and interacts with snRNP proteins via arginine/glycine-rich domains. Recently, SMN was also found to interact with core protein components of the two major families of small nucleolar RNPs, fibrillarin and GAR1, suggesting that SMN may also function in the assembly of small nucleolar RNPs. Here we present results that indicate that the interaction of SMN with GAR1 is mediated by the Tudor domain of SMN. Single point mutations within the Tudor domain, including a spinal muscular atrophy patient mutation, impair the interaction of SMN with GAR1. Furthermore, we find that either of the two arginine/glycine-rich domains of GAR1 can provide for interaction with SMN, but removal of both results in loss of the interaction. Finally, we have found that unlike the interaction of SMN with the Sm snRNP proteins, interaction with GAR1 and fibrillarin is not enhanced by arginine dimethylation. Our results argue against post-translational arginine dimethylation as a general requirement for SMN recognition of proteins bearing arginine/glycine-rich domains.  相似文献   
69.
70.
Herein, a novel electrospun single‐ion conducting polymer electrolyte (SIPE) composed of nanoscale mixed poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) and lithium poly(4,4′‐diaminodiphenylsulfone, bis(4‐carbonyl benzene sulfonyl)imide) (LiPSI) is reported, which simultaneously overcomes the drawbacks of the polyolefin‐based separator (low porosity and poor electrolyte wettability and thermal dimensional stability) and the LiPF6 salt (poor thermal stability and moisture sensitivity). The electrospun nanofiber membrane (es‐PVPSI) has high porosity and appropriate mechanical strength. The fully aromatic polyamide backbone enables high thermal dimensional stability of es‐PVPSI membrane even at 300 °C, while the high polarity and high porosity ensures fast electrolyte wetting. Impregnation of the membrane with the ethylene carbonate (EC)/dimethyl carbonate (DMC) (v:v = 1:1) solvent mixture yields a SIPE offering wide electrochemical stability, good ionic conductivity, and high lithium‐ion transference number. Based on the above‐mentioned merits, Li/LiFePO4 cells using such a SIPE exhibit excellent rate capacity and outstanding electrochemical stability for 1000 cycles at least, indicating that such an electrolyte can replace the conventional liquid electrolyte–polyolefin combination in lithium ion batteries (LIBs). In addition, the long‐term stripping–plating cycling test coupled with scanning electron microscope (SEM) images of lithium foil clearly confirms that the es‐PVPSI membrane is capable of suppressing lithium dendrite growth, which is fundamental for its use in high‐energy Li metal batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号