首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130413篇
  免费   22138篇
  国内免费   7600篇
  160151篇
  2024年   222篇
  2023年   1403篇
  2022年   3320篇
  2021年   5759篇
  2020年   5472篇
  2019年   7733篇
  2018年   7772篇
  2017年   6959篇
  2016年   8293篇
  2015年   10285篇
  2014年   11191篇
  2013年   12028篇
  2012年   11289篇
  2011年   10239篇
  2010年   8057篇
  2009年   6493篇
  2008年   6128篇
  2007年   5110篇
  2006年   4408篇
  2005年   3671篇
  2004年   3105篇
  2003年   2835篇
  2002年   2422篇
  2001年   2110篇
  2000年   1904篇
  1999年   1875篇
  1998年   983篇
  1997年   1054篇
  1996年   964篇
  1995年   896篇
  1994年   817篇
  1993年   656篇
  1992年   836篇
  1991年   675篇
  1990年   566篇
  1989年   429篇
  1988年   355篇
  1987年   310篇
  1986年   266篇
  1985年   296篇
  1984年   170篇
  1983年   165篇
  1982年   99篇
  1981年   59篇
  1980年   56篇
  1979年   69篇
  1978年   41篇
  1977年   45篇
  1975年   35篇
  1974年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.  相似文献   
972.
Zhang X  Bruice TC 《Biochemistry》2008,47(25):6671-6677
Molecular dynamics simulations employing a molecular mechanics (MM) force field and hybrid quantum mechanics (QM) and MM (QM/MM) have been carried out to investigate the product specificity and mechanism of the histone H4 lysine 20 (H4-K20) methylation by human histone lysine methyltransferase SET8. At neutral pH, the target lysine is available to only the enzyme in the protonated state. The first step in the methylation reaction must be deprotonation of the lysine target which is followed by the (+)AdoMet methylation of the neutral lysine [Enz.Lys-CH(2)-NH(3)(+).(+)AdoMet --> H(+) + Enz.Lys-CH(2)-NH(2).(+)AdoMet -->--> Enz.Lys-CH(2)-N(Me)H(2)(+).AdoHcy]. The electrostatic interactions between two positive charges on (+)AdoMet and Lys20-NH(3)(+) decrease the pK(a) of Lys20-NH(3)(+). Upon formation of Enz.Lys-NH(3)(+).(+)AdoMet, a water channel by which the proton escapes to the outer solvent phase is formed. The formation of a water channel for the escape of a proton from Lys20-N(Me)H(2)(+) in Enz.Lys20-N(Me)H(2)(+).(+)AdoMet is not formed because the methyl substituent blocks the starting of the water channel. Thus, a second methylation does not take place. The dependence of the occurrence of methyl transfer on the formation of a water channel in SET8 is in accord with our previous reports on product specificity by histone lysine monomethyltransferase SET7/9, large subunit lysine dimethyltransferase (LSMT), and viral histone lysine trimethyltransferase (vSET). The average value of the experimental DeltaG(E)() for the six lysine methyl transfer reactions catalyzed by vSET, LSMT, and SET7/9 with p53 as a substrate is 22.1 +/- 1.0 kcal/mol, and the computed average (DeltaG(C)()) is 22.2 +/- 0.8 kcal/mol. In this study, the computed free energy barrier of the methyl transfer reaction [Lys20-NH(2) + (+)AdoMet --> Lys20-N(Me)H(2)(+) + AdoHcy] catalyzed by SET8 is 20.8 kcal/mol. This is in agreement with the value of 20.6 kcal/mol calculated from the experimental rate constant (0.43 +/- 0.02 min(-1)). Our bond-order computations establish that the H4-K20 monomethylation in SET8 is a concerted linear S(N)2 displacement reaction.  相似文献   
973.
974.
Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.  相似文献   
975.
The hyperthermophilic α-amylase from Thermococcus sp. HJ21 does not require exogenous calcium ions for thermostability, and is a promising alternative to commercially available α-amylases to increase the efficiency of industrial processes like the liquefaction of starch. We analyzed the amino acid sequence of this α-amylase by sequence alignments and structural modeling, and found that this α-amylase closely resembles the α-amylase from Pyrococcus woesei. The gene of this α-amylase was cloned in Escherichia coli and the recombinant α-amylase was overexpressed and purified with a combined renaturation-purification procedure. We confirmed thermostability and exogenous calcium ion independency of the recombinant α-amylase and further investigated the mechanism of the independency using biochemical approaches. The results suggested that the α-amylase has a high calcium ion binding affinity that traps a calcium ion that would not dissociate at high temperatures, providing a direct explanation as to why the addition of calcium ions is not required for thermostability. Understanding of the mechanism offers a strong base on which to further engineer properties of this α-amylase for better potential applications in industrial processes.  相似文献   
976.
The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.  相似文献   
977.
Besides the well‐understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re‐entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re‐entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1‐involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re‐entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long‐term DNA damage responses causing cell cycle re‐entry. We propose that recovery from oxidative DNA damage‐induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.  相似文献   
978.
Background aimsWe wanted to determine whether zinc supplementation can inhibit bone marrow-derived mesenchymal stromal cell (MSC) apoptosis and enhance their tissue regenerative potential a in mouse ischemic hindlimb model.MethodsRat bone marrow cells were cultured and the resulting MSC were passaged for 3–7 generations. The proliferation and apoptosis of MSC was examined by 3-[4,5-dimethyl-2-thiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis. The activation of protein kinases B (Akt) was determined by Western blots. Vascular endothelial growth factor (VEGF) levels were examined by enzyme-linked immunosorbent assay. The mouse hindlimb ischemic model was established by ligating the right femoral artery. Mice received MSC, zinc-treated MSC or vehicle. The blood flow was assessed by laser Doppler imaging. The survival rate of donor cells was quantified by real-time polymerase chain reaction for the sex-determining region of the Y-chromosome (Sry). Angiogenesis was assessed by histochemical staining and immunofluoresence staining.ResultsSupplementation with physiologic amounts of zinc caused a marked attenuation of cell apoptosis, enhanced cell viabilities, increased VEGF release and up-regulated Akt activation. Zinc-treated MSC delivered into ischemic hindlimbs resulted in significant improvements in limb blood perfusion by increased implanted MSC survival and stimulated angiogenesis.ConclusionsThis study demonstrates the potential of zinc supplement to enhance survival of engrafted MSC and ameliorate their tissue regenerative potential in a mouse ischemic hindlimb model.  相似文献   
979.
980.
本研究采用插床育苗、薄膜覆盖的方法对泰顺杜鹃插穗进行不同剂型生根粉、不同浸泡时间、不同年龄、不同插穗长度和不同品种对比的扦插实验。结果表明:(1)生长调节剂GGR 6号相对于萘乙酸、清水生根率和不定根数较多;(2)按照高浓度速蘸低浓度浸泡原则,同激素的GGR 6号在同一浓度100 mg/L进行浸泡,以1.5 h~2h效果显著;(3)对于不同年龄生的插穗,一年生、两年生和三年生的虽不存在显著差异,但一年生插穗生根性状指标还是略高于其他;(4)对于不同规格的插穗,长度6~10 cm的生根率明显好于其他规格;(5)不同品种杜鹃生根状况存在差异,实验结果刺毛杜鹃整体性状优于泰顺杜鹃。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号