首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   8篇
  140篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   15篇
  2013年   16篇
  2012年   14篇
  2011年   16篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  1999年   2篇
  1997年   2篇
  1968年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
51.
Conantokins are short peptides derived from the venoms of marine cone snails that act as antagonists of the N-methyl-D-aspartate (NMDA) receptor family of excitatory glutamate receptors. These peptides contain γ-carboxyglutamic acid residues typically spaced at i,i+4 and/or i,i+7 intervals, which by chelating divalent cations induce and stabilize helical conformation of the peptide. Introduction of a dicarba bridge (or a staple) can covalently stabilize peptide helicity and improve its pharmacological properties. To test the hypothesis that stapling can effectively replace γ-carboxyglutamic acid residues in stabilizing the helical conformation of conantokins, we designed, synthesized, and characterized several stapled analogs of conantokin G (conG), with varying connectivities in terms of staple length and location along the face of the α-helix. NMR studies confirmed that the ring-closing metathesis reaction yielded a single product with the Z configuration of the olefinic bond. Based on circular dichroism and molecular modeling, the stapled analogs exhibited significantly enhanced helicity compared with the native peptide in a metal-free environment. Stapling i,i+4 was benign with respect to effects on in vitro and in vivo pharmacological properties. One analog, namely conG[11-15,S(i,i+4)S(8)], blocked NR2B-containing NMDA receptors with IC(50) = 0.7 μm and provided significant protection in the 6-Hz psychomotor model of pharmacoresistant epilepsy in mice. Remarkably, unlike native conG, conG[11-15,S(i,i+4)S(8)] produced no behavioral motor toxicity. Our results extend the applications of peptide stapling to helical peptides with extracellular targets and provide a means for engineering conantokins with improved pharmacological properties.  相似文献   
52.
ADP-glucose pyrophosphorylase regulates the synthesis of glycogen in bacteria and of starch in plants. The enzyme from plants is mainly activated by 3-phosphoglycerate and is a heterotetramer comprising two small and two large subunits. Here, we found that two highly conserved residues are critical for triggering the activation of the potato tuber ADP-glucose pyrophosphorylase, as shown by site-directed mutagenesis. Mutations in the small subunit, which bears the catalytic function in this potato tuber form, had a more dramatic effect on disrupting the allosteric activation than those introduced in the large subunit, which is mainly modulatory. Our results strongly agree with a model where the modified residues are located in loops responsible for triggering the allosteric activation signal for this enzyme, and the sensitivity to this activation correlates with the dynamics of these loops. In addition, previous biochemical data indicates that the triggering mechanism is widespread in the enzyme family, even though the activator and the quaternary structure are not conserved.  相似文献   
53.
54.
Levels of arbuscular mycorrhizal (AM) colonization and dark septate endophyte (DSE) colonization were assessed in the vegetation recolonizing a remnant bottomland hardwood forest in north central Texas following a 100 year flood. Thirty seven plant species representing 21 dicotyledonous and 2 montocotyledonous families established following floodwater recession. AM and/or DSE were found in all species. AM colonization was found in 31 out of the 37 species assessed including both monocotyledonous families (Poaceae and Cyperaceae) and 17 out of 21 dicotyledonous families (Acanthaceae, Asteraceae, Boraginaceae, Cucurbitaceae, Euphorbiaceae, Lamiaceae, Loganiaceae, Lythraceae, Malvaceae, Onagraceae, Pedaliaceae, Ranunculaceae, Sapindaceae, Scrophulariaceae, Solanaceae, Verbanaceae and Violaceae). DSE were found in 31 out of 37 species assessed including both monocotyledonous families and 15 out of 21 dicotyledonous families (Amaranthaceae, Asteraceae, Boraginaceae, Brassicaceae, Cucurbitaceae, Euphorbiaceae, Lamiaceae, Lythraceae, Malvaceae, Pedaliaceae, Phytolaccaceae, Polygonaceae, Ranunculaceae, Sapindaceae, Scrophulariaceae and Violaceae). There were no detectable differences in AM or DSE colonization levels among wetland indicator groups (p > 0.05). Levels of DSE colonization were negatively correlated with vesicular colonization and hyphal colonization for the obligate wetland species. There were no other significant relationships between AM and DSE colonization detected. Spearman rank order correlation coefficients did not differ significantly among wetland indicatory category for any level of AM or DSE colonization.  相似文献   
55.
56.
Transcranial Direct Current Stimulation (tDCS) is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. However, the molecular mechanisms underlying tDCS-mediated pain control, and most important its placebo component, are not completely established. In this pilot study, we investigated in vivo the involvement of the endogenous μ-opioid system in the global tDCS-analgesia experience. Nine healthy volunteers went through positron emission tomography (PET) scans with [11C]carfentanil, a selective μ-opioid receptor (MOR) radiotracer, to measure the central MOR activity during tDCS in vivo (non-displaceable binding potential, BPND) - one of the main analgesic mechanisms in the brain. Placebo and real anodal primary motor cortex (M1/2mA) tDCS were delivered sequentially for 20 minutes each during the PET scan. The initial placebo tDCS phase induced a decrease in MOR BPND in the periaqueductal gray matter (PAG), precuneus, and thalamus, indicating activation of endogenous μ-opioid neurotransmission, even before the active tDCS. The subsequent real tDCS also induced MOR activation in the PAG and precuneus, which were positively correlated to the changes observed with placebo tDCS. Nonetheless, real tDCS had an additional MOR activation in the left prefrontal cortex. Although significant changes in the MOR BPND occurred with both placebo and real tDCS, significant analgesic effects, measured by improvements in the heat and cold pain thresholds, were only observed after real tDCS, not the placebo tDCS. This study gives preliminary evidence that the analgesic effects reported with M1-tDCS, can be in part related to the recruitment of the same endogenous MOR mechanisms induced by placebo, and that such effects can be purposely optimized by real tDCS.  相似文献   
57.
The megalomicin and erythromycin polyketide synthases (PKSs) produce the same aglycon product, 6-deoxyerythronolide B (6-dEB). Both PKSs were examined in an Escherichia coli strain metabolically engineered to support complex polyketide biosynthesis. Production of 6-dEB in shake flask fermentations was undetectable by mass spectrometry in the strain expressing the megalomicin (Meg) PKS genes, whereas 31 mg/L 6-dEB was produced by the strain with the erythromycin (DEBS) PKS. The genes for each of the three subunits comprising the PKSs were expressed in different combinations from three compatible expression vectors (e.g., DEBS1, DEBS2, and MegA3) to identify two Meg PKS subunits, MegA1 and MegA3, which conferred lower 6-dEB titers than their DEBS counterparts. Comparison of protein expression levels and 6-dEB titers by engineered hybrid DEBS/Meg PKS genes further defined regions within modules 2 and 6 of MegA1 and MegA3, respectively, which limit protein expression and 6-dEB production in E. coli. Meg module 2 + TE (M2 + TE) and a hybrid DEBS M2/Meg M2 + TE protein were engineered and purified for in vitro comparisons with DEBS M2 + TE. The specific activity of the hybrid M2 + TE was approximately 16-fold lower than DEBS M2 + TE and only twice as high as the Meg M2 + TE enzyme in diketide elongation assays. Since the hybrid M2 worked comparably to DEBS M2 in vivo, this suggests that boosting subunit concentration could serve as a useful approach to overcome enzyme deficiencies in heterologous polyketide production.  相似文献   
58.
59.
60.
Due to a combination of efforts from individual laboratories and structural genomics centers, there has been a surge in the number of members of the Gcn5‐related acetyltransferasesuperfamily that have been structurally determined within the past decade. Although the number of three‐dimensional structures is increasing steadily, we know little about the individual functions of these enzymes. Part of the difficulty in assigning functions for members of this superfamily is the lack of information regarding how substrates bind to the active site of the protein. The majority of the structures do not show ligand bound in the active site, and since the substrate‐binding domain is not strictly conserved, it is difficult to predict the function based on structure alone. Additionally, the enzymes are capable of acetylating a wide variety of metabolites and many may exhibit promiscuity regarding their ability to acetylate multiple classes of substrates, possibly having multiple functions for the same enzyme. Herein, we present an approach to identify potential substrates for previously uncharacterized members of the Gcn5‐related acetyltransferase superfamily using a variety of metabolites including polyamines, amino acids, antibiotics, peptides, vitamins, catecholamines, and other metabolites. We have identified potential substrates for eight bacterial enzymes of this superfamily. This information will be used to further structurally and functionally characterize them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号