首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   8篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   15篇
  2013年   16篇
  2012年   14篇
  2011年   16篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  1999年   2篇
  1997年   2篇
  1968年   1篇
排序方式: 共有140条查询结果,搜索用时 203 毫秒
111.
NagZ is an exo‐N‐acetyl‐β‐glucosaminidase, found within Gram‐negative bacteria, that acts in the peptidoglycan recycling pathway to cleave N‐acetylglucosamine residues off peptidoglycan fragments. This activity is required for resistance to cephalosporins mediated by inducible AmpC β‐lactamase. NagZ uses a catalytic mechanism involving a covalent glycosyl enzyme intermediate, unlike that of the human exo‐N‐acetyl‐β‐glucosaminidases: O‐GlcNAcase and the β‐hexosaminidase isoenzymes. These latter enzymes, which remove GlcNAc from glycoconjugates, use a neighboring‐group catalytic mechanism that proceeds through an oxazoline intermediate. Exploiting these mechanistic differences we previously developed 2‐N‐acyl derivatives of O‐(2‐acetamido‐2‐deoxy‐D ‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), which selectively inhibits NagZ over the functionally related human enzymes and attenuate antibiotic resistance in Gram‐negatives that harbor inducible AmpC. To understand the structural basis for the selectivity of these inhibitors for NagZ, we have determined its crystallographic structure in complex with N‐valeryl‐PUGNAc, the most selective known inhibitor of NagZ over both the human β‐hexosaminidases and O‐GlcNAcase. The selectivity stems from the five‐carbon acyl chain of N‐valeryl‐PUGNAc, which we found ordered within the enzyme active site. In contrast, a structure determination of a human O‐GlcNAcase homologue bound to a related inhibitor N‐butyryl‐PUGNAc, which bears a four‐carbon chain and is selective for both NagZ and O‐GlcNAcase over the human β‐hexosamnidases, reveals that this inhibitor induces several conformational changes in the active site of this O‐GlcNAcase homologue. A comparison of these complexes, and with the human β‐hexosaminidases, reveals how selectivity for NagZ can be engineered by altering the 2‐N‐acyl substituent of PUGNAc to develop inhibitors that repress AmpC mediated β‐lactam resistance.  相似文献   
112.
For marine mammals, the ability to tolerate apnea and make extended dives is a defining adaptive trait, facilitating the exploitation of marine food resources. Elevated levels of myoglobin within the muscles are a consistent hallmark of this trait, allowing oxygen collected at the surface to be stored in the muscles and subsequently used to support extended dives. In mysticetes, the largest of marine predators, details on muscular myoglobin levels are limited. The developmental trajectory of muscular myoglobin stores has yet to be documented and any physiological links between early behavior and the development of muscular myoglobin stores remain unknown. In this study, we used muscle tissue samples from stranded mysticetes to investigate these issues. Samples from three different age cohorts and three species of mysticetes were included (total sample size = 18). Results indicate that in mysticete calves, muscle myoglobin stores comprise only a small percentage (17–23%) of conspecific adult myoglobin complements. Development of elevated myoglobin levels is protracted over the course of extended maturation in mysticetes. Additionally, comparisons of myoglobin levels between and within muscles, along with details of interspecific differences in rates of accumulation of myoglobin in very young mysticetes, suggest that levels of exercise may influence the rate of development of myoglobin stores in young mysticetes. This new information infers a close interplay between the physiology, ontogeny and early life history of young mysticetes and provides new insight into the pressures that may shape adaptive strategies in migratory mysticetes. Furthermore, the study highlights the vulnerability of specific age cohorts to impending changes in the availability of foraging habitat and marine resources.  相似文献   
113.
Three lineages of cartilaginous fishes have independently evolved filter feeding (Lamniformes: Megachasma and Cetorhinus, Orectolobiformes: Rhincodon, and Mobulidae: Manta and Mobula); and the structure of the branchial filters is different in each group. The filter in Rhincodon typus has been described; species within the Lamniformes have simple filamentous filters, but the anatomy and ultrastructure of the branchial filter in the mobulid rays varies and is of functional interest. In most fishes, branchial gill rakers are elongated structures located along the anterior ceratobranchial and/or epibranchial arches; however, mobulid gill rakers are highly modified, flattened, lobe‐like structures located on the anterior and posterior epibranchial elements as well as the ceratobranchials. The ultrastructure of the filter lobes can be smooth or covered by a layer of microcilia, and some are denticulated along the dorsal and ventral lobe surface. Flow through the mobulid oropharyngeal cavity differs from other filter‐feeding fishes in that water must rapidly deviate from the free stream direction. There is an abrupt 90° turn from the initial inflowing path to move through the laterally directed branchial filter pores, over the gill tissue, and out the ventrally located gill slits. The deviation in the flow must result in tangential shearing stress across the filter surface. This implies that mobulids can use cross‐flow filtration in which this shearing force serves as a mechanism to resuspend food particles initially caught by sieving or another capture mode. These particles will be transported by the cross filter flow toward the esophagus. We propose that species with cilia on the rakers augment the shear mediated movement of particles along the filter with ciliary transport. J. Morphol. 274:1026–1043, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
114.
The SpeG spermidine/spermine N‐acetyltransferase (SSAT) from Escherichia coli belongs to the Gcn5‐related N‐acetyltransferase (GNAT) superfamily of proteins. In vitro characterization of this enzyme shows it acetylates the polyamines spermine and spermidine, with a preference toward spermine. This enzyme has a conserved tyrosine residue (Y135) that is found in all SSAT proteins and many GNAT functional subfamilies. It is located near acetyl coenzyme A in the active center of these proteins and has been suggested to act as a general acid in a general acid/base chemical mechanism. In contrast, a previous study showed this residue was not critical for E. coli SpeG enzymatic activity when mutated to phenylalanine. This result was quite different from previous studies with a comparable residue in the human and mouse SSAT proteins, which also acetylate spermine and spermidine. Therefore, we constructed several mutants of the E. coli SpeG Y135 residue and tested their enzymatic activity. We found this conserved residue was indeed critical for E. coli SpeG enzyme activity and may behave similarly in other SSAT proteins.  相似文献   
115.
116.
Inward rectifier potassium (Kir) channels serve important functional and modulatory roles in a wide variety of cells. While the activity of several members of this channel family are tightly regulated by intracellular messengers such as adenosine triphosphate, G proteins, protein kinases and pH, other members are tonically active and activity is controlled only by the expression level of the protein. In a number of Kir channels, sequence motifs have been identified which determine how effectively the channel is trafficked to and from the plasma membrane. In this report, we identify a number of trafficking determinants in the Kir4.2 channel. Using mutational analysis, we found that truncation of the C terminus of the protein increased current density in Xenopus oocytes, although multiple mutations of the C terminus had no effect on current density. Instead, mutation of a unique region of the channel significantly increased current density. Selective mutation of a putative tyrosine phosphorylation site within this region mimicked the increase in current, suggesting that tyrosine phosphorylation of the protein increases channel retrieval from the membrane (or prevents trafficking to the membrane). Mutation of a previously identified trafficking determinant, K110N, also caused an increase in current density, and combining these mutations caused a multiplicative increase in current, suggesting that these two mutations increase current by independent mechanisms. These data demonstrate novel determinants of Kir4.2 channel expression.  相似文献   
117.
Docking of the centrosome at the plasma membrane directs lytic granules to the immunological synapse. To identify signals controlling centrosome docking at the synapse, we have studied cytotoxic T lymphocytes (CTLs) in which expression of the T cell receptor-activated tyrosine kinase Lck is ablated. In the absence of Lck, the centrosome is able to translocate around the nucleus toward the immunological synapse but is unable to dock at the plasma membrane. Lytic granules fail to polarize and release their contents, and target cells are not killed. In CTLs deficient in both Lck and the related tyrosine kinase Fyn, centrosome translocation is impaired, and the centrosome remains on the distal side of the nucleus relative to the synapse. These results show that repositioning of the centrosome in CTLs involves at least two distinct steps, with Lck signaling required for the centrosome to dock at the plasma membrane.  相似文献   
118.
Lytic granule (LG)-mediated apoptosis is the main mechanism by which CTL kill virus-infected and tumorigenic target cells. CTL form a tight junction with the target cells, which is called the immunological synapse (IS). To avoid unwanted killing of neighboring cells, exocytosis of lytic granules (LG) is tightly controlled and restricted to the IS. In this study, we show that in activated human primary CD8(+) T cells, docking of LG at the IS requires tethering LG with CD3-containing endosomes (CD3-endo). Combining total internal reflection fluorescence microscopy and fast deconvolution microscopy (both in living cells) with confocal microscopy (in fixed cells), we found that LG and CD3-endo tether and are cotransported to the IS. Paired but not single LG are accumulated at the IS. The dwell time of LG at the IS is substantially enhanced by tethering with CD3-endo, resulting in a preferential release of paired LG over single LG. The SNARE protein Vti1b is required for tethering of LG and CD3-endo. Downregulation of Vti1b reduces tethering of LG with CD3-endo. This leads to an impaired accumulation and docking of LG at the IS and a reduction of target cell killing. Therefore, Vti1b-dependent tethering of LG and CD3-endo determines accumulation, docking, and efficient lytic granule secretion at the IS.  相似文献   
119.
120.

Purpose

The study aims to assess the feasibility of tomotherapy-based image-guided (IGRT) radiotherapy for locally advanced oropharyngeal cancer. A retrospective review of 33 patients undergoing concurrent chemoradiation for locally advanced oropharyngeal cancers was conducted. Radiotherapy planning, treatment toxicity and loco-regional control were assessed.

Results

At a median follow-up of 32 months (6–47 months), no patient developed loco-regional recurrence. Two patients (6%) developed distant metastases. Grade 3–4 acute toxicity was respectively 72% and 25% for mucositis and gastrointestinal toxicity. Two patients (6%) had long-term dependence on tube feedings. Dose-volume histogram demonstrated excellent target volume coverage and low radiation dose to the organs at risk for complications.

Conclusions and clinical relevance

IGRT provides excellent loco-regional control but acute toxicity remains significant and needs to be addressed in future prospective trials. The feasibility of Tomotherapy to decrease radiation dose to the normal tissues merits further investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号