全文获取类型
收费全文 | 19439篇 |
免费 | 1757篇 |
国内免费 | 2148篇 |
专业分类
23344篇 |
出版年
2024年 | 55篇 |
2023年 | 289篇 |
2022年 | 606篇 |
2021年 | 981篇 |
2020年 | 717篇 |
2019年 | 858篇 |
2018年 | 885篇 |
2017年 | 588篇 |
2016年 | 810篇 |
2015年 | 1244篇 |
2014年 | 1520篇 |
2013年 | 1579篇 |
2012年 | 1896篇 |
2011年 | 1709篇 |
2010年 | 1100篇 |
2009年 | 1048篇 |
2008年 | 1117篇 |
2007年 | 1052篇 |
2006年 | 860篇 |
2005年 | 706篇 |
2004年 | 632篇 |
2003年 | 543篇 |
2002年 | 461篇 |
2001年 | 309篇 |
2000年 | 295篇 |
1999年 | 269篇 |
1998年 | 187篇 |
1997年 | 154篇 |
1996年 | 144篇 |
1995年 | 96篇 |
1994年 | 122篇 |
1993年 | 66篇 |
1992年 | 86篇 |
1991年 | 68篇 |
1990年 | 61篇 |
1989年 | 40篇 |
1988年 | 34篇 |
1987年 | 21篇 |
1986年 | 16篇 |
1985年 | 25篇 |
1984年 | 13篇 |
1983年 | 16篇 |
1982年 | 15篇 |
1980年 | 4篇 |
1978年 | 5篇 |
1974年 | 3篇 |
1973年 | 5篇 |
1972年 | 3篇 |
1968年 | 3篇 |
1965年 | 8篇 |
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
141.
Liguo Feng Han Ding Jia Wang Meng Wang Wei Xia Shu Zang Lixia Sheng 《Saudi Journal of Biological Sciences》2015,22(4):417-423
Salt stress is one important factor influencing the growth and development of plants, and salt tolerance of plants is a result of combined action of multiple genes and mechanisms. Rosa rugosa is not only an important ornamental plant, but also the natural aromatic plant of high value. Wild R. rugosa which is naturally distributed on the coast and islands of China has a good salt tolerance due to the special living environment. Here, the vacuolar Na+/H+ reverse transporter gene (NHX1) and the vacuolar H+-ATPase subunit C gene (VHA-c) closely related to plant salt tolerance were isolated from wild R. rugosa, and the expression patterns in R. rugosa leaves of the two genes under NaCl stress were determined by real-time quantitative fluorescence PCR. The results showed that the RrNHX1 protein is a constitutive Na+/H+ reverse transporter, the expression of the RrNHX1 gene first increased and then decreased with the increasing salt concentration, and had a time-controlled effect. The RrVHA-c gene is suggestive of the housekeeping feature, its expression pattern showed a similar variation trend with the RrNHX1 gene under the stress of different concentrations of NaCl, and its temporal expression level under 200 mM NaCl stress presented bimodal change. These findings indicated that RrNHX1 and RrVHA-c genes are closely associated with the salt tolerance trait of wild R. rugosa. 相似文献
142.
Shan Xiao Lin Wei Zongqin Hong Li Rao Yanliang Ren Jian Wan Lingling Feng 《Bioorganic & medicinal chemistry》2019,27(5):805-812
By using a new Fragment-Based Virtual Screen strategy, two series of novel FBA-II inhibitors (thiourea derivatives) were de novo discovered based on the active site of fructose-1, 6-bisphosphate aldolase from Cyanobacterial (CyFBA). In comparison, most of the N-(2-benzoylhydrazine-1-carbonothioyl) benzamide derivatives (L14~L22) exhibit higher CyFBA-II inhibitory activities compared to N-(phenylcarbamothioyl) benzamide derivatives (L1~L13). Especially, compound L14 not only shows higher CyFBA-II activity (Ki?=?0.65?μM), but also exhibits most potent in vivo activity against Synechocystis sp. PCC 6803 (EC50?=?0.09?ppm), higher (7-fold) than that of our previous inhibitor (EC50?=?0.6?ppm). The binding modes of compound L14 and CyFBA-II were further elucidated by jointly using DOX computational protocol, MM-PBSA and site-directed mutagenesis assays. The positive results suggest that strategy adopted in this study was promising to rapidly discovery the potent inhibitors with novel scaffolds. The satisfactory algicide activities suggest that the thiourea derivatives is very likely to be a promising lead for the development of novel specific algicides to solve Cyanobacterial harmful algal blooms (CHABs). 相似文献
143.
144.
Defective gene expression,S phase progression,and maturation during hematopoiesis in E2F1/E2F2 mutant mice 总被引:6,自引:0,他引:6 下载免费PDF全文
E2F plays critical roles in cell cycle progression by regulating the expression of genes involved in nucleotide synthesis, DNA replication, and cell cycle control. We show that the combined loss of E2F1 and E2F2 in mice leads to profound cell-autonomous defects in the hematopoietic development of multiple cell lineages. E2F2 mutant mice show erythroid maturation defects that are comparable with those observed in patients with megaloblastic anemia. Importantly, hematopoietic defects observed in E2F1/E2F2 double-knockout (DKO) mice appear to result from impeded S phase progression in hematopoietic progenitor cells. During DKO B-cell maturation, differentiation beyond the large pre-BII-cell stage is defective, presumably due to failed cell cycle exit, and the cells undergo apoptosis. However, apoptosis appears to be the consequence of failed maturation, not the cause. Despite the accumulation of hematopoietic progenitor cells in S phase, the combined loss of E2F1 and E2F2 results in significantly decreased expression and activities of several E2F target genes including cyclin A2. Our results indicate specific roles for E2F1 and E2F2 in the induction of E2F target genes, which contribute to efficient expansion and maturation of hematopoietic progenitor cells. Thus, E2F1 and E2F2 play essential and redundant roles in the proper coordination of cell cycle progression with differentiation which is necessary for efficient hematopoiesis. 相似文献
145.
146.
Wei Yang Juan Gu Xuedong Wang Yueping Wang Mei Feng Daoping Zhou Jianmin Guo Ming Zhou 《Journal of cellular and molecular medicine》2019,23(5):3166-3177
This study aims to explore the mechanism of Circular RNA CDR1as implicating in regulating 5‐fluorouracil (5‐FU) chemosensitivity in breast cancer (BC) by competitively inhibiting miR‐7 to regulate CCNE1. Expressions of CDR1as and miR‐7 in 5‐FU‐resistant BC cells were determined by RT‐PCR. CCK‐8, colony formation assay and flow cytometry were applied to measure half maximal inhibitory concentration (IC50), 5‐Fu chemosensitivity and cell apoptosis. Western blot was used to detect the expressions of apoptosis‐related factors. CDR1as was elevated while miR‐7 was inhibited in 5‐FU‐resistant BC cells. Cells transfected with si‐CDR1as or miR‐7 mimic had decreased IC50 and colony formation rate, increased expressions of Bax/Bcl2 and cleaved‐Caspase‐3/Caspase‐3, indicating inhibition of CDR1as and overexpression of miR‐7 enhances the chemosensitity of 5‐FU‐resistant BC cells. Targetscan software indicates a binding site of CDR1as and miR‐7 and that CCNE1 is a target gene of miR‐7. miR‐7 can gather CDR1as in BC cells and can inhibit CCNE1. In comparison to si‐CDR1as group, CCNE1 was increased and chemosensitivity to 5‐Fu was suppressed in si‐CDR1as + miR‐7 inhibitor group. When compared with miR‐7 mimic group, CDR1as + miR‐7 mimic group had increased CCNE1 and decreased chemosensitivity to 5‐Fu. Nude mouse model of BC demonstrated that the growth of xenotransplanted tumour in si‐CDR1as + miR‐7 inhibitor group was faster than that in si‐CDR1as group. The tumour growth in CDR1as + miR‐7 mimic group was faster than that in miR‐7 mimic group. CDR1as may regulate chemosensitivity of 5‐FU‐resistant BC cells by inhibiting miR‐7 to regulate CCNE1. 相似文献
147.
Kai‐Qing Lu Min Li Guo‐Hong Wang Lian‐Sheng Xu David K. Ferguson Anjali Trivedi Jing Xuan Ying Feng Jin‐Feng Li Gan Xie Yi‐Feng Yao Yu‐Fei Wang 《植物分类学报:英文版》2019,57(2):190-199
Members of the Chenopodiaceae are the most dominant elements in the central Asian desert. The different genera and species within this family are common in desert vegetation types. Should it prove possible to link pollen types in this family to specific desert vegetation, it would be feasible to trace vegetation successions in the geological past. Nevertheless, the morphological similarity of pollen grains in the Chenopodiaceae rarely permits identification at the generic level. Although some pollen classifications of Chenopodiaceae have been proposed, none of them tried to link pollen types to specific desert vegetation types in order to explore their ecological significance. Based on the pollen morphological characters of 13 genera and 24 species within the Chenopodiaceae of eastern central Asia, we provide a new pollen classification of this family with six pollen types and link them to those plant communities dominated by Chenopodiaceae, for example, temperate dwarf semi‐arboreal desert (Haloxylon type), temperate succulent halophytic dwarf semi‐shrubby desert (Suaeda, Kalidium, and Atriplex types), temperate annual graminoid desert (Kalidium type), temperate semi‐shrubby and dwarf semi‐shrubby desert (Kalidium, Iljini, and Haloxylon types), and alpine cushion dwarf semi‐shrubby desert (Krascheninnikovia type). These findings represent a new approach for detecting specific desert vegetation types and deciphering ecosystem evolution in eastern central Asia. 相似文献
148.
成纤维细胞生长因子17(FGF17)是成纤维细胞生长因子(FGF)家族的成员之一,并与FGF8、FGF18组成FGF8亚家族。在胚胎时期FGF17扮演重要角色,对多种组织器官起着重要作用。研究发现,FGF17不仅参与了脑部发育和神经形成,而且参与骨骼、动脉的发育和肿瘤等生物过程。现针对FGF17的特点,及其在胚胎发育、神经系统、癌症等方面的作用进行综述。 相似文献
149.
本文根据MTT只能被活的增殖细胞中线粒体切断形成紫色甲(?)的原理,测定了8—甲氧基补骨脂素(8—MOP)对体外培养人癌细胞系HCT、KB和BEL细胞的光敏灭活作用。结果表明,8—MOP和UVA光照对这几种人癌细胞有肯定的灭活作用,该作用与8—MOP剂量和光照时间以及细胞种类有关;MTT法可以作为光敏剂活性检测的一种快捷方法。 相似文献
150.
We have recently demonstrated that Cys-254 of the 73-kDa A subunit of the clathrin-coated vesicle (H+)-ATPase is responsible for sensitivity of the enzyme to sulfhydryl reagents (Feng, Y., and Forgac, M. (1992) J. Biol. Chem. 267, 5817-5822). In the present study we observe that for the purified enzyme, disulfide bond formation causes inactivation of proton transport which is reversed by dithiothreitol (DTT). DTT also restores activity of the oxidized enzyme following treatment with N-ethylmaleimide (NEM). These results indicate that disulfide bond formation between the NEM-reactive cysteine (Cys-254) and a closely proximal cysteine residue leads to inactivation of the (H+)-ATPase. To test whether sulfhydryl-disulfide bond interchange may play a role in regulating vacuolar acidification in vivo, we have determined what fraction of the (H+)-ATPase is disulfide-bonded in native clathrin-coated vesicles. Vesicles were isolated under conditions that prevent any change in the oxidation state of the sulfhydryl groups. NEM treatment of vesicles causes nearly complete loss of activity while subsequent treatment with DTT restores 50% of the activity of the fully reduced vesicles. By contrast, treatment of fully reduced vesicles with NEM leads to inactivation which is not reversed by DTT. These results indicate that a significant fraction of the clathrin-coated vesicle (H+)-ATPase exists in an inactive, disulfide-bonded state and suggest that sulfhydryl-disulfide bond interconversion may play a role in controlling vacuolar (H+)-ATPase (V-ATPase) activity in vivo. 相似文献