全文获取类型
收费全文 | 79010篇 |
免费 | 6556篇 |
国内免费 | 4916篇 |
专业分类
90482篇 |
出版年
2024年 | 140篇 |
2023年 | 902篇 |
2022年 | 2081篇 |
2021年 | 3611篇 |
2020年 | 2339篇 |
2019年 | 2850篇 |
2018年 | 2872篇 |
2017年 | 2034篇 |
2016年 | 2884篇 |
2015年 | 4593篇 |
2014年 | 5309篇 |
2013年 | 5971篇 |
2012年 | 6909篇 |
2011年 | 6365篇 |
2010年 | 3833篇 |
2009年 | 3383篇 |
2008年 | 4122篇 |
2007年 | 3671篇 |
2006年 | 3185篇 |
2005年 | 2692篇 |
2004年 | 2282篇 |
2003年 | 1975篇 |
2002年 | 1735篇 |
2001年 | 1561篇 |
2000年 | 1568篇 |
1999年 | 1450篇 |
1998年 | 847篇 |
1997年 | 798篇 |
1996年 | 808篇 |
1995年 | 736篇 |
1994年 | 687篇 |
1993年 | 530篇 |
1992年 | 818篇 |
1991年 | 657篇 |
1990年 | 601篇 |
1989年 | 531篇 |
1988年 | 421篇 |
1987年 | 362篇 |
1986年 | 336篇 |
1985年 | 299篇 |
1984年 | 221篇 |
1983年 | 199篇 |
1982年 | 112篇 |
1981年 | 119篇 |
1980年 | 86篇 |
1979年 | 147篇 |
1978年 | 84篇 |
1977年 | 95篇 |
1975年 | 111篇 |
1974年 | 116篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
953.
Mingzhu Luo Rong Fan Xiaoming Wang Junyu Lu Ping Li Wenbin Chu Yonghe Hu Xuewei Chen 《Bioscience reports》2021,41(6)
Ethnopharmacological relevance: Gualou Xiebai Banxia (GLXBBX) decoction is a well-known traditional Chinese herbal formula that was first discussed in the Synopsis of the Golden Chamber by Zhang Zhongjing in the Eastern Han Dynasty. In traditional Chinese medicine, GLXBBX is commonly prescribed to treat cardiovascular diseases, such as coronary heart disease and atherosclerosis.Objective: The present study aimed to examine GLXBBX’s preventative capacity and elucidate the potential molecular mechanism of Poloxamer 407 (P407)-induced hyperlipidemia in rats.Materials and methods: Both the control and model groups received pure water, and the test group also received a GLXBBX decoction. For each administration, 3 ml of the solution was administered orally. To establish hyperlipidemia, a solution mixed with 0.25 g/kg P407 dissolved in 0.9% normal saline was injected slowly into the abdominal cavity. At the end of the study, the rats’ plasma lipid levels were calculated using an automatic biochemical analyzer to evaluate the preventative capability of the GLXBBX decoction, and the serum and liver of the rats were collected.Results: The GLXBBX decoction significantly improved P407-induced hyperlipidemia, including increased plasma triglycerides (TGs), aspartate aminotransferase (AST) elevation, and lipid accumulation. Moreover, GLXBBX decoction treatment increased lipoprotein lipase (LPL) activity and mRNA expression of LPL. Furthermore, GLXBBX significantly suppressed the mRNA expression of stearoyl-CoA desaturase (SCD1).Conclusion: GLXBBX significantly improved P407-induced hyperlipidemia, which may have been related to enhanced LPL activity, increased LPL mRNA expression, and decreased mRNA expression of SCD1. 相似文献
954.
Yong Ge Tao Ling Yao Wang Xin Jia Xiongmei Xie Rong Chen Shangwu Chen Shaochun Yuan Anlong Xu 《EMBO reports》2021,22(11)
N 6‐methyladenosine (m6A) is a chemical modification present in multiple RNA species and is most abundant in mRNAs. Studies on m6A reveal its comprehensive roles in almost every aspect of mRNA metabolism, as well as in a variety of physiological processes. Although some recent discoveries indicate that m6A can affect the life cycles of numerous viruses as well as the cellular antiviral immune response, the roles of m6A modification in type I interferon (IFN‐I) signaling are still largely unknown. Here, we reveal that WT1‐associated protein (WTAP), one of the m6A “writers”, is degraded via the ubiquitination‐proteasome pathway upon activation of IFN‐I signaling. With the degradation of WTAP, the m6A levels of IFN‐regulatory factor 3 (IRF3) and interferon alpha/beta receptor subunit 1 (IFNAR1) mRNAs are reduced, leading to translational suppression of IRF3 and instability of IFNAR1 mRNA. Thus, the WTAP‐IRF3/IFNAR1 axis may serve as negative feedback pathway to fine‐tune the activation of IFN‐I signaling, which highlights the roles of m6A in the antiviral response by dictating the fate of mRNAs associated with IFN‐I signaling. 相似文献
955.
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer’s disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders. 相似文献
956.
四个鲫鱼品系线粒体DNA的限制性酶切分析 总被引:10,自引:0,他引:10
用差速离心和核酸酶消化法从红鲫 (C auratusredvar .)、湘鲫 [F1hybridsofredcruciancarp (♀ )×commoncarp (♂ ) ]、野鲫 (C auratusauratus)和白鲫 (C auratuscuvieri)的肝组织及白鲫的卵巢中提取和纯化线粒体DNA。用 9种内切酶 (EcoRⅠ、HindⅢ、PstⅠ、BglⅡ、BamHⅠ、XhoⅠ、XbaⅠ、SalⅠ和KpnⅠ )进行单酶酶解 ,经琼脂糖凝胶电泳分析 ,检测出PstⅠ、KpnⅠ和BglⅡ 3种酶在品系间存在限制性片段长度多态性 ,但并未检测出品系内的限制性片段长度多态性。计算出红鲫、湘鲫、白鲫和野鲫的mtDNA大小分别约为 16 19、 16 0 2、 16 6 0和 16 0 6kb。根据限制性酶切片段共享度 ,计算出 4个品系间的遗传距离 ,结果表明存在直接亲缘关系的红鲫与湘鲫之间的遗传差异最小 ,证实了红鲫与子代湘鲫之间mtDNA遵循母系遗传的特性。 相似文献
957.
The meiotic division in oocytes is arrested in the G2 phase of the cell cycle. Resumption of meiosis, also known as oocyte maturation, entails a G2 to M transition. At the G2-M boundary, maturation promoting factor (MPF) activation is usually induced via several ways, including tyrosine dephosphorylation of p34(cdc2) and synthesis of cyclin B according to cell type and species. Previous studies in our laboratory demonstrated that glucocorticoids directly inhibit the meiotic maturation of pig oocytes in vitro. The aim of this study was therefore to investigate the influence of glucocorticoids on the expression of p34(cdc2) and cyclin B1 in resumption of meiosis of pig oocytes. We detected the relative levels and association of p34(cdc2) and cyclin B1. Isolated cumulus-enclosed oocytes were cultured in Waymouth MB752/1 medium supplemented with sodium pyruvate (50 microgram/ml), LH (0.5 microgram/ml), FSH (0.5 microgram/ml), and estradiol-17beta (1 microgram/ml) in the presence or absence of dexamethasone (DEX) for 24 hr; they then were cultured without hormonal supplements in the presence or absence of DEX for an additional 24 hr. We found that cyclin B1, as well as p34(cdc2), was already present in fully grown G2-arrested pig oocytes when removed from the follicle. In these oocytes, cyclin B1 and p34(cdc2) were already associated in complex. Treatment with DEX at concentrations of 1 microgram/ml or above decreased the level of cyclin B1, but had no effect on the level of p34(cdc2). The exposure of oocytes to DEX also decreased the amount of complexed p34(cdc2)-cyclin B1. These findings suggest that the inhibitory action of DEX on meiotic maturation could be due, at least in part, to the reduced amount of p34(cdc2)-cyclin B1 complex. 相似文献
958.
Wang Q O'Brien PJ Chen CX Cho DS Murray JM Nishikura K 《Journal of neurochemistry》2000,74(3):1290-1300
Different isoforms of serotonin subtype 2C receptor (5-HT(2C)R) with altered G protein-coupling efficacy are generated by RNA editing, which converts genomically encoded adenosine residues into inosines. In combination, editing of five sites all located within the second intracellular loop region of 5-HT(2C)R mRNA changes the gene-encoded Ile, Asn, and Ile at positions 156, 158, and 160, respectively. We analyzed the G protein-coupling functions of previously unreported editing isoform receptors. An approximately 13-fold reduction in the agonist potency for G protein-coupling stimulation as well as a significantly reduced basal level activity was observed with the thalamus-specific isoform carrying Ile156, Gly158, and Val160 (5-HT(2C)R-IGV). In contrast, the agonist was four- to five-fold less potent with 5-HT(2C)R-MSV and -IDV, detected in the amygdala and choroid plexus, respectively, indicating a dominant role for the amino acid residue at position 158 in receptor functions. We also identified a splicing variant receptor with a truncated C terminus that displayed no ligand binding capacity or G protein-coupling activity. Examination of the alternatively spliced RNA encoding this truncated receptor suggests that editing of this variant RNA occurs after completion of splicing, resulting in complete editing at all five sites. 相似文献
959.
The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner 总被引:3,自引:0,他引:3 下载免费PDF全文
Tolerance to replication-blocking DNA lesions is achieved by means of ubiquitylation of PCNA, the processivity clamp for replicative DNA polymerases, by components of the RAD6 pathway. In the yeast Saccharomyces cerevisiae the ubiquitin ligase (E3) responsible for polyubiquitylation of the clamp is the RING finger protein Rad5p. Interestingly, the RING finger, responsible for the protein's E3 activity, is embedded in a conserved DNA-dependent ATPase domain common to helicases and chromatin remodeling factors of the SWI/SNF family. Here, we demonstrate that the Rad5p ATPase domain provides the basis for a function of the protein in DNA double-strand break repair via a RAD52- and Ku-independent pathway mediated by the Mre11/Rad50/Xrs2 protein complex. This activity is distinct and separable from the contribution of the RING domain to ubiquitin conjugation to PCNA. Moreover, we show that the Rad5 protein physically associates with the single-stranded DNA regions at a processed double-strand break in vivo. Our observations suggest that Rad5p is a multifunctional protein that—by means of independent enzymatic activities inherent in its RING and ATPase domains—plays a modulating role in the coordination of repair events and replication fork progression in response to various different types of DNA lesions. 相似文献
960.
Chen XM O'Hara SP Nelson JB Splinter PL Small AJ Tietz PS Limper AH LaRusso NF 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(11):7447-7456
Infection of epithelial cells by Cryptosporidium parvum triggers a variety of host-cell innate and adaptive immune responses including release of cytokines/chemokines and up-regulation of antimicrobial peptides. The mechanisms that trigger these host-cell responses are unclear. Thus, we evaluated the role of TLRs in host-cell responses during C. parvum infection of cultured human biliary epithelia (i.e., cholangiocytes). We found that normal human cholangiocytes express all known TLRs. C. parvum infection of cultured cholangiocytes induces the selective recruitment of TLR2 and TLR4 to the infection sites. Activation of several downstream effectors of TLRs including IL-1R-associated kinase, p-38, and NF-kappaB was detected in infected cells. Transfection of cholangiocytes with dominant-negative mutants of TLR2 and TLR4, as well as the adaptor molecule myeloid differentiation protein 88 (MyD88), inhibited C. parvum-induced activation of IL-1R-associated kinase, p-38, and NF-kappaB. Short-interfering RNA to TLR2, TLR4, and MyD88 also blocked C. parvum-induced NF-kappaB activation. Moreover, C. parvum selectively up-regulated human beta-defensin-2 in directly infected cells, and inhibition of TLR2 and TLR4 signals or NF-kappaB activation were each associated with a reduction of C. parvum-induced human beta-defensin-2 expression. A significantly higher number of parasites were detected in cells transfected with a MyD88 dominant-negative mutant than in the control cells at 48-96 h after initial exposure to parasites, suggesting MyD88-deficient cells were more susceptible to infection. These findings demonstrate that cholangiocytes express a variety of TLRs, and suggest that TLR2 and TLR4 mediate cholangiocyte defense responses to C. parvum via activation of NF-kappaB. 相似文献